Expressive Gait Synthesis Using PCA and Gaussian Modeling

  • Joëlle Tilmanne
  • Thierry Dutoit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)


In this paper we analyze walking sequences of an actor performing walk under eleven different states of mind. These walk sequences captured with an inertial motion capture system are used as training data to model walk in a reduced dimension space through principal component analysis (PCA). In that reduced PC space, the variability of walk cycles for each emotion and the length of each cycle are modeled using Gaussian distributions. Using this modeling, new sequences of walk can be synthesized for each expression, taking into account the variability of walk cycles over time in a continuous sequence.


Motion synthesis expressivity PCA variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brand, M., Hertzmann, A.: Style machines. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 183–192 (2000)Google Scholar
  2. 2.
    Calinon, S., Guenter, F., Billard, A.: On Learning, Representing, and Generalizing a Task in a Humanoid Robot. IEEE Transactions on Systems, Man and Cybernetics 37(2), 286–298 (2007)CrossRefGoogle Scholar
  3. 3.
    Elgammal, A., Lee, C.S.: The Role of Manifold Learning in Human Motion Analysis Human Motion Understanding, Modeling, Capture and Animation, pp. 1–29 (2008)Google Scholar
  4. 4.
    Forbes, K., Fiume, E.: An efficient search algorithm for motion data using weighted PCA. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 67–76 (2005)Google Scholar
  5. 5.
    Forsyth, D.A., Arikan, O., Ikemoto, L., O‘Brien, J., Ramanan, D.: Computational Studies of Human Motion: Part 1, Tracking and Motion Synthesis. In: Foundations and Trends in Computer Graphics and Vision, vol. 1(2-3). Now Publishers Inc. (2006)Google Scholar
  6. 6.
    Geng, W., Yu, G.: Reuse of Motion Capture Data in Animation: A Review. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 620–629. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Glardon, P., Boulic, R., Thalmann, D.: PCA-based walking engine using motion capture data. In: Computer Graphics International, pp. 292–298 (2004)Google Scholar
  8. 8.
    Glardon, P., Boulic, R., Thalmann, D.: A Coherent Locomotion Engine Extrapolating Beyond Experimental Data. In: Proceedings of Computer Animation and Social Agent (CASA), Geneva, Switzerland, pp. 73–84 (2004)Google Scholar
  9. 9.
    Grassia, F.S.: Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3, 29–48 (1998)CrossRefGoogle Scholar
  10. 10.
    Grudzinski, T.: Exploiting Quaternion PCA in Virtual Character Motion Analysis. In: Computer Vision and Graphics, pp. 420–429 (2009)Google Scholar
  11. 11.
    IGS-190. Animazoo, (2010)
  12. 12.
    Johnson, M.P.: Exploiting quaternions to support expressive interactive character motion. PhD Thesis (2002)Google Scholar
  13. 13.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistic. Springer, New York ( (2002)zbMATHGoogle Scholar
  14. 14.
    Li, Y., Wang, T., Shum, H.: Motion texture: a two-level statistical model for character motion synthesis. In: Proc. of SIGGRAPH 2002, New York, NY, USA, pp. 465–472 (2002)Google Scholar
  15. 15.
    Menache, A.: Understanding motion Capture for Computer Animation and Video Games. Morgan Kauffman Publishers Inc., San Francisco (1999)Google Scholar
  16. 16.
    Shoemake, K.: Animating Rotations with Quaternion Curves. In: Proc. of SIGGRAPH 1985, San Francisco, vol. 19(3), pp. 245–254 (1985)Google Scholar
  17. 17.
    Tanco, L.M., Hilton, A.: Realistic synthesis of novel human movements from a database of motion capture examples. In: Proc. of the Workshop on Human Motion (HUMO 2000), Washington DC, USA, pp. 137–142 (2000)Google Scholar
  18. 18.
    Troje, N.F.: Retrieving information from human movement patterns. In: Understanding Events: How Humans See, Represent, and Act on Events, pp. 308–334. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  19. 19.
    Urtasun, R., Glardon, P., Boulic, R., Thalmann, D., Fua, P.: Style-Based Motion Synthesis. Computer Graphics Forum 23(4), 799–812 (2004)CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Liu, Z., Zhou, L.: Automatic 3d motion synthesis with time-striding hidden markov model. In: Yeung, D.S., Liu, Z.-Q., Wang, X.-Z., Yan, H. (eds.) ICMLC 2005. LNCS (LNAI), vol. 3930, pp. 558–567. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joëlle Tilmanne
    • 1
  • Thierry Dutoit
    • 1
  1. 1.TCTS LabUniversity of MonsMonsBelgium

Personalised recommendations