Advertisement

Knowledge-Based Probability Maps for Covert Pathfinding

  • Anja Johansson
  • Pierangelo Dell’Acqua
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)

Abstract

Virtual characters in computer games sometimes need to find a path from point A to point B while minimizing the risk of being spotted by an enemy. Visibility calculations of the environment are needed to accomplish this. While previous methods have focused on either general visibility calculations or calculations based only on current enemy positions, we suggest a method to incorporate the agent’s knowledge of previous enemy positions. By creating a probability distribution of the positions of the enemies and using this in the visibility calculation, we create a more accurate visibility map.

Keywords

Artificial intelligence pathfinding visibility maps knowledge-based agents probability maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batty, M.: Exploring isovist fields: space and shape in architectural and urban morphology. Environment and Planning B: Planning and Design 28, 123–150 (2001)CrossRefGoogle Scholar
  2. 2.
    Behnke, S.: Local multiresolution path planning. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 332–343. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Benedikt, M.L.: To take hold of space: isovist fields. Environment and Planning B: Planning and Design 6(1), 47–65 (1979)CrossRefGoogle Scholar
  4. 4.
    Bittner, J., Wonka, P.: Visibility in computer graphics. Journal of Environmental Planning 30, 729–756 (2003)CrossRefGoogle Scholar
  5. 5.
    Cohen-or, D., Chrysanthou, Y., Silva, C.T., Durand, F.: A survey of visibility for walkthrough applications, tech. report (2000)Google Scholar
  6. 6.
    Geraerts, R., Overmars, M.: The corridor map method: A general framework for real-time high-quality path planning. Computer Animation and Virtual Worlds 18(2), 107–119 (2007)CrossRefGoogle Scholar
  7. 7.
    Geraerts, R., Schager, E.: Stealth-based path planning using corridor maps. In: Proc. Computer Animation and Social Agents, CASA 2010 (2010)Google Scholar
  8. 8.
    Johansson, A., Dell’Acqua, P.: Introducing time in behavior networks. In: Proceedings of 2010 IEEE Conference on Computational Intelligence and Games (CIG), pp. 297–304 (2010)Google Scholar
  9. 9.
    Johansson, A., Dell’Acqua, P.: Affective states in behavior networks. In: Plemenos, D., Miaoulis, G. (eds.) Intelligent Computer Graphics 2009. Studies in Computational Intelligence, vol. 240, pp. 19–39. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Karamouzas, I., Overmars, M.H.: Adding variation to path planning. Computer Animation and Virtual Worlds 19(3-4), 283–293 (2008)CrossRefGoogle Scholar
  11. 11.
    Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM 22(10), 560–570 (1979)CrossRefGoogle Scholar
  12. 12.
    Marzouqi, M., Jarvis, R.: Covert path planning for autonomous robot navigation in known environments. In: Proc. of the Australian Conference on Robotics and Automation (2003)Google Scholar
  13. 13.
    Marzouqi, M., Jarvis, R.: Covert robotics: Covert path planning in unknown environments. In: Proc. of the Australian Conference on Robotics and Automation (2003)Google Scholar
  14. 14.
    Obermeyer, K.J.: The VisiLibity library, r-1 (2008), http://www.VisiLibity.org
  15. 15.
    Overmars, M., Karamouzas, I., Geraerts, R.: Flexible path planning using corridor maps. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 1–12. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Stenz, A.: Optimal and efficient path planning for partially-known environments. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 3310–3317 (1994)Google Scholar
  17. 17.
    Tozour, P.: Game programming gems 2, chap. 3.6. Cengage Learning (2001)Google Scholar
  18. 18.
    Van Bilsen, A.: How can serious games benefit from 3d visibility analysis? In: Proc. of International Simulation and Gaming Association 2009 (2009)Google Scholar
  19. 19.
    Van Bilsen, A.: Mathematical Explorations in Urban and Regional Design. Ph.D. thesis, Delft University of Technology, Netherlands (2008)Google Scholar
  20. 20.
    Van Bilsen, A., Stolk, E.: Solving error problems in visibility analysis for urban environments by shifting from a discrete to a continuous approach. In: ICCSA 2008: Proceedings of the 2008 International Conference on Computational Sciences and Its Applications, pp. 523–528. IEEE Computer Society Press, Washington (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anja Johansson
    • 1
  • Pierangelo Dell’Acqua
    • 1
  1. 1.Dept. of Science and TechnologyLinköping UniversitySweden

Personalised recommendations