Responsive Action Generation by Physically-Based Motion Retrieval and Adaptation

  • Xiubo Liang
  • Ludovic Hoyet
  • Weidong Geng
  • Franck Multon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)


Responsive motion generation of avatars who have physical interactions with their environment is a key issue in VR and video games. We present a performance-driven avatar control interface with physically-based motion retrieval. When the interaction between the user-controlled avatar and its environment is going to happen, the avatar has to select the motion clip that satisfies both kinematic and dynamic constraints. A two-steps process is proposed. Firstly, it selects a set of candidate motions according to the performance of the user. Secondly, these candidate motions are further ranked according to their capability to satisfy dynamic constraints such as balance and comfort. The motion associated with the highest score is finally adapted in order to accurately satisfy the kinematic constraints imposed by the virtual world. The experimental results show that it can efficiently control the avatar with an intuitive performance-based interface based on few motion sensors.


Motion sensors motion retrieval physical constraints motion adaptation virtual human avatar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chai, J., Hodgins, J.: Performance animation from low-dimensional control signals. ACM Trans. on Graph. 24(3), 686–696 (2005)CrossRefGoogle Scholar
  2. 2.
    Liang, X., Li, Q., Zhang, X., Zhang, S., Geng, W.: Performance-driven motion choreographing with accelerometers. Computer Animation and Virtual Worlds 20(2-3), 89–99 (2009)CrossRefGoogle Scholar
  3. 3.
    Shiratori, T., Hodgins, J.: Accelerometer-based user interfaces for the control of a physically simulated character. ACM Trans. on Graph. 27(5), 1–9 (2008)CrossRefGoogle Scholar
  4. 4.
    Liu, F., Zhuang, Y., Wu, F., Pan, Y.: 3d motion retrieval with motion index tree. Computer Vision and Image Understanding 92(2-3), 265–284 (2003)CrossRefGoogle Scholar
  5. 5.
    Keogh, E., Palpanas, T., Zordan, V., Gunopulos, D., Cardle, M.: Indexing large human-motion databases. In: Proceedings of the 30th International Conference on Very Large Data Bases, pp. 780–791 (2004)Google Scholar
  6. 6.
    Muller, M., Roder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. ACM Trans. on Graph. 24(3), 677–685 (2005)CrossRefGoogle Scholar
  7. 7.
    Slyper, R., Hodgins, J.: Action capture with accelerometers. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 193–199 (2008)Google Scholar
  8. 8.
    Liang, X., Zhang, S., Li, Q., Pronost, N., Geng, W., Multon, F.: Intuitive motion retrieval with motion sensors. In: Proceedings of Computer Graphics International, pp. 64–71 (2008)Google Scholar
  9. 9.
    Hodgins, J., Wooten, W., Brogan, D., O’Brien, J.: Animating human athletics. In: Proceedings of ACM SIGGRAPH 1995, pp. 71–78 (1995)Google Scholar
  10. 10.
    Hodgins, J., Pollard, N.: Adapting simulated behaviors for new characters. In: Proceedings of ACM SIGGRAPH 1997, pp. 153–162 (1997)Google Scholar
  11. 11.
    Wooten, W.L., Hodgins, J.: Animation of human diving. Computer Graphics Forum 15, 3–13 (1996)CrossRefGoogle Scholar
  12. 12.
    Yin, K., Loken, K., van de Panne, M.: Simbicon: Simple biped locomotion control. ACM Trans. on Graph. 26(3), 105 (2007)CrossRefGoogle Scholar
  13. 13.
    Sok, K.W., Kim, M., Lee, J.: Simulating biped behaviors from human motion data. ACM Trans. Graph. 26(3), 107 (2007)CrossRefGoogle Scholar
  14. 14.
    Zordan, V., Hodgins, J.: Motion capture-driven simulations that hit and react. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 89–96 (2002)Google Scholar
  15. 15.
    Tak, S., Song, O.Y., Ko, H.S.: Motion balance filtering. Computer Graphics Forum 19(3), 437–446 (2000)CrossRefGoogle Scholar
  16. 16.
    Yamane, K., Nakamura, Y.: Dynamic filters - concept and implementations of online motion generator for human figures. IEEE Trans. on Robotics and Automation 19(3), 421–432 (2003)CrossRefGoogle Scholar
  17. 17.
    Tak, S., Ko, H.: A physically-based motion retargeting filter. ACM Trans. on Graph. 24(1), 98–117 (2005)CrossRefGoogle Scholar
  18. 18.
    Tak, S., Song, O.Y., Ko, H.S.: Spacetime sweeping: a interactive dynamic constraints solver. In: Proceedings of IEEE Computer Animation, pp. 261–270 (2002)Google Scholar
  19. 19.
    Witkin, A., Kass, M.: Spacetime constraints. In: Proceedings of ACM SIGGRAPH, pp. 159–168 (1988)Google Scholar
  20. 20.
    Sofonova, A., Hodgins, J., Pollard, N.: Synthesizing physically realistic human motion in lowdimensional, behavior-specific spaces. ACM Trans., on Graph. 23(3), 514–521 (2004)CrossRefGoogle Scholar
  21. 21.
    Jain, S., Ye, Y., Liu, K.: Optimization-based interactive motion synthesis. ACM Trans. on Graph. 28(1), 10:1–10:12 (2009)Google Scholar
  22. 22.
    Shin, H., Kovar, L., Gleicher, M.: Physical touch-up of human motions. In: Proceedings of Pacific Graphics 2003, pp. 194–203 (2003)Google Scholar
  23. 23.
    Zordan, V., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Trans. on Graph. 24, 697–701 (2005)CrossRefGoogle Scholar
  24. 24.
    Mitake, H., Asano, K., Aoki, T., Marc, S., Sato, M., Hasegawa, S.: Physics-driven multi dimensional keyframe animation for artist-directable interactive character. Computer Graphics Forum 28(2), 279–287 (2009)CrossRefGoogle Scholar
  25. 25.
    Treuille, A., Lee, Y., Popović, Z.: Near-optimal character animation with continuous control. ACM Trans. Graph. 26(3), 7:1–7:7 (2007)Google Scholar
  26. 26.
    Cooper, S., Hertzmann, A., Popović, Z.: Active learning for real-time motion controllers. ACM Trans. on Graph. 26(3), 5 (2007)CrossRefGoogle Scholar
  27. 27.
    Ishigaki, S., White, T., Zordan, V.B., Liu, C.K.: Performance-based control interface for character animation. ACM Trans. on Graph. 28(3), 61:1–61:8 (2009)Google Scholar
  28. 28.
    Kajita, S.: Humanoid Robot, Ohmsha, Japan (2005)Google Scholar
  29. 29.
    Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum 24, 343–352 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xiubo Liang
    • 1
  • Ludovic Hoyet
    • 2
  • Weidong Geng
    • 1
  • Franck Multon
    • 2
    • 3
  1. 1.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina
  2. 2.Bunraku projectIRISARennesFrance
  3. 3.M2S, University Rennes2RennesFrance

Personalised recommendations