Advertisement

Realtime Rendering of Realistic Fabric with Alternation of Deformed Anisotropy

  • Young-Min Kang
Conference paper
  • 1.1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)

Abstract

In this paper, an efficient method is proposed to produce photorealistic images of woven fabrics without material data such as the measured BRDFs. The proposed method is applicable both to ray tracer based offline renderers and to realtime applications such as games. In order to enhance the realism of cloth rendering, researchers have been utilizing the measured data of surface reflectance properties. Although the example-based approaches drastically enhance the realism of virtual fabric rendering, those methods have serious disadvantage that they require huge amount of storage for the various reflectance properties of diverse materials. The proposed method models the reflectance properties of woven fabric with alternating anisotropy and deformed MDF(microfacet distribution function). The experimental results show the proposed method can be successfully applied to photorealistic rendering of diverse woven fabric materials even in interactive applications.

Keywords

Fabric rendering alternating anisotropy deformed anistropy realtime rendering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adabala, N., Magnenat-Thalmann, N., Fei, G.: Real-time rendering of woven clothes. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 41–47 (2003)Google Scholar
  2. 2.
    Adabala, N., Magnenat-Thalmann, N., Fei, G.: Visualization of woven cloth. In: Proceedings of the 14th EUROGRAPHICS Workshop on Rendering. ACM International Conference Proceeding Series, vol. 44, pp. 178–185 (2003)Google Scholar
  3. 3.
    Ashikhmin, M., Premoze, S., Shirley, P.: A microfacet-based brdf generator. In: Proceedings of ACM SIGGRAPH 2000, pp. 65–74 (2000)Google Scholar
  4. 4.
    Ashikhmin, M., Shirley, P.: An anisotropic phong brdf model. Journal of Graphics Tools 5(2), 25–32 (2002)CrossRefGoogle Scholar
  5. 5.
    Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. Computer Graphics, ACM SIGGRAPH 1981 Conference Proceedings 15(3), 307–316 (1981)Google Scholar
  6. 6.
    Dana, K.J., Nayar, S.K., Van Ginneken, B., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Transactions on Graphics 18(1), 1–34 (1999)CrossRefGoogle Scholar
  7. 7.
    Daubert, K., Lensch, H.P.A., Heindrich, W., Seidel, H.P.: Effcient cloth modeling and rendering. In: Proc. 12th Eurographics Workshop on Rendering, Rendering Techniques 2001, pp. 63–70 (2001)Google Scholar
  8. 8.
    Daubert, K., Seidel, H.P.: Hardwarebased volumetric knitwear. Computer Graphics Forum EUROGRAPHICS 2002 Proceedings 21, 575–584 (2002)CrossRefGoogle Scholar
  9. 9.
    Gröller, E., Rau, R., Strasser, W.: Modeling and visualization of knitwear. IEEE Transactions on Visualization and Compute Graphics, 302–310 (1995)Google Scholar
  10. 10.
    Gröller, E., Rau, R., Strasser, W.: Modeling textile as three dimensional texture. In: Proc. 7th EUROGRAPHICS Workshop on Rendering, Rendering Techniques 1996, pp. 205–214 (1996)Google Scholar
  11. 11.
    Blinn, J., Newell, M.: Texture and reflection in computer generated images. Communication of ACM 19(10), 542–547 (1976)CrossRefGoogle Scholar
  12. 12.
    Wang, J., Zhao, S., Tong, X., Synder, J., Guo, B.: Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Transactions on Graphics (SIGGRAPH 2008) 27(3), 41:1–41:9 (2008)Google Scholar
  13. 13.
    Lawrence, J., Ben-Artzi, A., Decoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., Rusinkiewicz, S.: Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics 25(3), 735–745 (2006)CrossRefGoogle Scholar
  14. 14.
    McAllister, D.K., Lastra, A.A., Heidrich, W.: Efficient rendering of spatial bi-directional reflectance distribution functions. In: Proceedings of the 17th EUROGRAPHICS/ SIGGRAPH Workshop on Graphics Hardware (EGGH 2002), pp. 79–88 (2002)Google Scholar
  15. 15.
    Meissner, M., Eberhardt, B.: The art of knitted fabrics, realistic and physically based modeling of knitted patterns. Computer Graphics Forum (EUROGRAPHICS 1998 Proceedings), 355–362 (1998)Google Scholar
  16. 16.
    Sattler, M., Sarlette, R., Klein, R.: Efficient and realistic visualization of cloth. In: Proceedings of the 14th EUROGRAPHICS Workshop on Rendering, EGRW 2003, pp. 167–177 (2003)Google Scholar
  17. 17.
    Sloan, P.-P., Cohen, M.F.: Interactive horizon mapping. In: Proceedings of the Eurographics Workshop on Rendering Techniques 2000, pp. 281–286 (2000)Google Scholar
  18. 18.
    Torrance, K.E., Sparrow, E.M.: Theory for off-specular reflection from roughened surfaces. Journal of Optical Society of America 57(9) (1967)Google Scholar
  19. 19.
    Xu, Y., Lin, Y.C.S., Zhong, H., Wu, E., Guo, B., Shum, H.: Photorealistic rendering of knitwear using the lumislice. In: Proceedings of SIGGRAPH 2001, pp. 391–398 (2001)Google Scholar
  20. 20.
    Yasuda, T., Yokoi, S., Toriwaki, J., Inagaki, K.: A shading model for cloth objects. IEEE Computer Graphics and Applications 12(6), 15–24 (1992)CrossRefGoogle Scholar
  21. 21.
    Zinke, A., Weber, A.: Light scattering from filaments. IEEE Transactions on Visualization and Computer Graphics 13(2), 342–356 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Young-Min Kang
    • 1
  1. 1.Dept. of Game EngineeringTongmyong UniversityNam-guKorea

Personalised recommendations