Advertisement

Perception Based Real-Time Dynamic Adaptation of Human Motions

  • Ludovic Hoyet
  • Franck Multon
  • Taku Komura
  • Anatole Lecuyer
Conference paper
  • 1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)

Abstract

This paper presents a new real-time method for dynamics-based animation of virtual characters. It is based on rough physical approximations that lead to natural-looking and physically realistic human motions. The first part of this work consists in evaluating the relevant parameters of natural motions performed by people subject to various external perturbations. According to this pilot study, we have defined a method that is able to adapt in real-time the motion of a virtual character in order to satisfy kinematic and dynamic constraints, such as pushing, pulling and carrying objects with more or less mass. This method relies on laws provided by experimental studies that enable us to avoid using complex mechanical models and thus save computation time. One of the most important assumption consists in decoupling the pose of character and the timing of the motion. Thanks to this method, it is possible to animate up to 15 characters at 60Hz while dealing with complex kinematic and dynamic constraints.

Keywords

Motion adaptation physics interaction perception-based approach virtual human 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Trans. Graph. 24(3), 697–701 (2005)CrossRefGoogle Scholar
  2. 2.
    Yin, K., Loken, K., van de Panne, M.: Simbicon: simple biped locomotion control. ACM Trans. Graph. 26(3), 105 (2007)CrossRefGoogle Scholar
  3. 3.
    Macchietto, A., Zordan, V., Shelton, C.R.: Momentum control for balance. ACM Trans. Graph. 28(3) (2009)Google Scholar
  4. 4.
    Shiratori, T., Coley, B., Cham, R., Hodgins, J.K.: Simulating balance recovery responses to trips based on biomechanical principles. In: Proceedings of SCA 2009, pp. 37–46 (2009)Google Scholar
  5. 5.
    Hoyet, L., Multon, F., Komura, T., Lecuyer, A.: Can we distinguish biological motions of virtual humans? Perceptual study with captured motions of weight lifting. To appear in the Proceedings of VRST 2010 (2010)Google Scholar
  6. 6.
    Hodgins, J.K., Wooten, W.L., Brogan, D.C., O’Brien, J.F.: Animating human athletics. In: Proceedings of SIGGRAPH 1995, pp. 71–78 (1995)Google Scholar
  7. 7.
    Faloutsos, P., van de Panne, M., Terzopoulos, D.: Composable controllers for physics-based character animation. In: Proceedings of SIGGRAPH 2001, pp. 251–260 (2001)Google Scholar
  8. 8.
    Faloutsos, P., van de Panne, M., Terzopoulos, D.: The virtual stuntman: dynamic characters with a repertoire of autonomous motor skills. Computers and Graphics 25(6), 933–953 (2001)CrossRefGoogle Scholar
  9. 9.
    Zordan, V.B., Hodgins, J.K.: Motion capture-driven simulations that hit and react. In: Proceedings of SCA 2002, pp. 89–96 (2002)Google Scholar
  10. 10.
    Witkin, A., Kass, M.: Spacetime constraints. In: Proceedings of SIGGRAPH 1988, pp. 159–168 (August 1988)Google Scholar
  11. 11.
    Cohen, M.F.: Interactive spacetime control for animation. SIGGRAPH Comput. Graph. 26(2), 293–302 (1992)CrossRefGoogle Scholar
  12. 12.
    Liu, C.K., Popović, Z.: Synthesis of complex dynamic character motion from simple animations. In: Proceedings of SIGGRAPH 2002, pp. 408–416 (2002)Google Scholar
  13. 13.
    Liu, C.K., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24(3), 1071–1081 (2005)CrossRefGoogle Scholar
  14. 14.
    Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. In: Proceedings of SIGGRAPH 2003, pp. 417–426 (2003)Google Scholar
  15. 15.
    Safonova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23(3), 514–521 (2004)CrossRefGoogle Scholar
  16. 16.
    Komura, T., Ho, E.S.L., Lau, R.W.H.: Animating reactive motion using momentum-based inverse kinematics: Motion capture and retrieval. Comput. Animat. Virtual Worlds 16(3-4), 213–223 (2005)CrossRefGoogle Scholar
  17. 17.
    Arikan, O., Forsyth, D.A., O’Brien, J.F.: Pushing people around. In: Proceedings of SCA 2005, pp. 59–66 (2005)Google Scholar
  18. 18.
    Mitake, H., Asano, K., Aoki, T., Salvati, M., Sato, M., Hasegawa, S.: Physics-driven multi dimensional keyframe animation for artist-directable interactive character. Comput. Graph. Forum 28(2), 279–287 (2009)CrossRefGoogle Scholar
  19. 19.
    Majkowska, A., Faloutsos, P.: Flipping with physics: motion editing for acrobatics. In: Proceedings of SCA 2007, pp. 35–44 (2007)Google Scholar
  20. 20.
    Yamane, K., Nakamura, Y.: Dynamics filter - concept and implementation of on-line motion generator for human figures. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, pp. 688–695 (2000)Google Scholar
  21. 21.
    Pollard, N., Reitsma, P.: Animation of humanlike characters: Dynamic motion filtering with a physically plausible contact model. In: Proc. of Yale Workshop on Adaptive and Learning Systems (2001)Google Scholar
  22. 22.
    Tak, S., Ko, H.S.: A physically-based motion retargeting filter. ACM Trans. Graph. 24(1), 98–117 (2005)CrossRefGoogle Scholar
  23. 23.
    Shin, H.J., Kovar, L., Gleicher, M.: Physical touch-up of human motions. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, PG 2003, p. 194 (2003)Google Scholar
  24. 24.
    O’Sullivan, C., Dingliana, J., Giang, T., Kaiser, M.K.: Evaluating the visual fidelity of physically based animations. ACM Trans. Graph. 22(3), 527–536 (2003)CrossRefGoogle Scholar
  25. 25.
    Reitsma, P.S.A., O’Sullivan, C.: Effect of scenario on perceptual sensitivity to errors in animation. ACM Trans. Appl. Percept. 6(3), 1–16 (2009)CrossRefGoogle Scholar
  26. 26.
    Yeh, T.Y., Reinman, G., Patel, S.J., Faloutsos, P.: Fool me twice: Exploring and exploiting error tolerance in physics-based animation. ACM Trans. Graph. 29(1) (2009)Google Scholar
  27. 27.
    Bingham, G.P.: Kinematic form and scaling: further investigations on the visual perception of lifted weight. Journal of Experimental Psychology. Human Perception and Performance 13(2), 155–177 (1987)CrossRefGoogle Scholar
  28. 28.
    Runeson, S., Frykholm, G.: Visual perception of lifted weight. Journal of Experimental Psychology: Human Perception and Performance 7, 733–740 (1981)Google Scholar
  29. 29.
    Hof, A.L.: The equations of motion for a standing human reveal three mechanisms for balance. J. Biomech. 40, 451–457 (2007)CrossRefGoogle Scholar
  30. 30.
    Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum, Eurographics 2005 Special Issue 24, 343–352 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ludovic Hoyet
    • 1
  • Franck Multon
    • 1
    • 2
  • Taku Komura
    • 3
  • Anatole Lecuyer
    • 1
  1. 1.Bunraku TeamIRISA - INRIA Bretagne AtlantiqueRennesFrance
  2. 2.M2S - Mouvement Sport Santé University Rennes 2France
  3. 3.IPABUniversity of EdinburghScotland

Personalised recommendations