Motion Parameterization with Inverse Blending

  • Yazhou Huang
  • Marcelo Kallmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)


Motion blending is a popular motion synthesis technique which interpolates similar motion examples according to blending weighs parameterizing high-level characteristics of interest. We present in this paper an optimization framework for determining blending weights able to produce motions precisely satisfying multiple given spatial constraints. Our proposed method is simpler than previous approaches, and yet it can quickly achieve locally optimal solutions without pre–processing of basis functions. The effectiveness of our method is demonstrated in solving two classes of problems: 1) we show the precise control of end-effectors during the execution of diverse upper–body actions, and 2) we also address the problem of synthesizing walking animations with precise feet placements, demonstrating the ability to simultaneously meet multiple constraints and at different frames. Our several experimental results demonstrate that the proposed optimization approach is simple to implement and effectively achieves realistic results with precise motion control.


Motion parameterization character animation walk synthesis spatial constraints 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, Y., Liu, C.K., Popović, Z.: Momentum-based parameterization of dynamic character motion. In: 2004 ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation, SCA 2004, pp. 173–182. Eurographics Association, Aire-la-Ville (2004)CrossRefGoogle Scholar
  2. 2.
    Arikan, O., Forsyth, D.A.: Synthesizing constrained motions from examples. Proceedings of SIGGRAPH 21(3), 483–490 (2002)zbMATHGoogle Scholar
  3. 3.
    Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. ACM Transaction on Graphics (Proceedings of SIGGRAPH) 22(3), 402–408 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH 1995, pp. 97–104. ACM Press, New York (1995)Google Scholar
  5. 5.
    Camporesi, C., Huang, Y., Kallmann, M.: Interactive motion modeling and parameterization by direct demonstration. In: Proceedings of the 10th International Conference on Intelligent Virtual Agents, IVA (2010)Google Scholar
  6. 6.
    Cooper, S., Hertzmann, A., Popović, Z.: Active learning for real-time motion controllers. ACM Transactions on Graphics (SIGGRAPH 2007) 26(3) (August 2007)Google Scholar
  7. 7.
    Coros, S., Beaudoin, P., Yin, K.K., van de Pann, M.: Synthesis of constrained walking skills. ACM Trans. Graph. 27(5), 1–9 (2008)CrossRefGoogle Scholar
  8. 8.
    Gleicher, M., Shin, H.J., Kovar, L., Jepsen, A.: Snap-together motion: assembling run-time animations. In: Proceedings of the Symposium on Interactive 3D Graphics (I3D), pp. 181–188. ACM Press, New York (2003)Google Scholar
  9. 9.
    Grochow, K., Martin, S., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 23(3), 522–531 (2004)CrossRefGoogle Scholar
  10. 10.
    Heck, R., Gleicher, M.: Parametric motion graphs. In: Proc. of the 2007 Symposium on Interactive 3D Graphics and Games, I3D 2007, pp. 129–136. ACM Press, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Transaction on Graphics (Proceedings of SIGGRAPH) 23(3), 559–568 (2004)CrossRefGoogle Scholar
  12. 12.
    Kovar, L., Gleicher, M., Pighin, F.H.: Motion graphs. Proceedings of SIGGRAPH 21(3), 473–482 (2002)Google Scholar
  13. 13.
    Kovar, L., Schreiner, J., Gleicher, M.: Footskate cleanup for motion capture editing. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation (SCA), pp. 97–104. ACM Press, New York (2002)Google Scholar
  14. 14.
    Kwon, T., Shin, S.Y.: Motion modeling for on-line locomotion synthesis. In: Proceedings of the 2005 ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation, SCA 2005, pp. 29–38. ACM Press, New York (2005)CrossRefGoogle Scholar
  15. 15.
    Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. In: ACM SIGGRAPH, pp. 1062–1070. ACM Press, New York (2005)Google Scholar
  16. 16.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge Univ. Press, New York (2007)zbMATHGoogle Scholar
  17. 17.
    Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 18, 32–40 (1998)CrossRefGoogle Scholar
  18. 18.
    Rose III, C.F., Sloan, P.P.J., Cohen, M.F.: Artist-directed inverse-kinematics using radial basis function interpolation. Computer Graphics Forum (Proceedings of Eurographics) 20(3), 239–250 (2001)CrossRefGoogle Scholar
  19. 19.
    Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. In: ACM SIGGRAPH 2007, p. 106. ACM, New York (2007)Google Scholar
  20. 20.
    Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. ACM Trans. Graph. 24(3), 488–495 (2005)CrossRefGoogle Scholar
  21. 21.
    Treuille, A., Lee, Y., Popović, Z.: Near-optimal character animation with continuous control. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH 2007, p. 7. ACM Press, New York (2007)Google Scholar
  22. 22.
    Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure animation. In: SIGGRAPH 1995, pp. 91–96. ACM Press, New York (1995)Google Scholar
  23. 23.
    Wiley, D.J., Hahn, J.K.: Interpolation synthesis of articulated figure motion. IEEE Computer Graphics and Applications 17(6), 39–45 (1997)CrossRefGoogle Scholar
  24. 24.
    Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. In: ACM SIGGRAPH 2004, pp. 532–539. ACM, New York (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yazhou Huang
    • 1
  • Marcelo Kallmann
    • 1
  1. 1.University of CaliforniaMercedUSA

Personalised recommendations