Advertisement

Navigation Queries from Triangular Meshes

  • Marcelo Kallmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)

Abstract

Navigation meshes are commonly employed as a practical representation for path planning and other navigation queries in animated virtual environments and computer games. This paper explores the use of triangulations as a navigation mesh, and discusses several useful triangulation–based algorithms and operations: environment modeling and validity, automatic agent placement, tracking moving obstacles, ray–obstacle intersection queries, path planning with arbitrary clearance, determination of corridors, etc. While several of the addressed queries and operations can be applied to generic triangular meshes, the efficient computation of paths with arbitrary clearance requires a new type of triangular mesh, called a Local Clearance Triangulation, which enables the efficient and correct determination if a disc of arbitrary size can pass through any narrow passages of the mesh. This paper shows that triangular meshes can support the efficient computation of several navigation procedures and an implementation of the presented methods is available.

Keywords

Path planning reactive behaviors navigation crowd simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, G., Mitchell, J.S., Guibas, L.J., Roos, T.: Voronoi diagrams of moving points. Internat. J. Comput. Geom. Appl. 8, 365–380 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proceedings of the International Conference on Robotics and Automation, ICRA 2008 (2008)Google Scholar
  3. 3.
    De Berg, M., Cheong, O., van Kreveld, M.: Computational geometry: algorithms and applications. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Demyen, D., Buro, M.: Efficient triangulation-based pathfinding. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006, pp. 942–947. AAAI Press, Menlo Park (2006)Google Scholar
  5. 5.
    Fiorini, L.P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research 17(7), 760–772 (1998)CrossRefGoogle Scholar
  6. 6.
    Gayle, R., Sud, A., Andersen, E., Guy, S.J., Lin, M.C., Manocha, D.: Interactive navigation of heterogeneous agents using adaptive roadmaps. IEEE Transactions on Visualization and Computer Graphics 15, 34–48 (2009)CrossRefGoogle Scholar
  7. 7.
    Geraerts, R.: Planning short paths with clearance using explicit corridors. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2010 (2010)Google Scholar
  8. 8.
    Geraerts, R., Overmars, M.H.: The corridor map method: a general framework for real-time high-quality path planning: Research articles. Computer Animation and Virtual Worlds 18(2), 107–119 (2007)CrossRefGoogle Scholar
  9. 9.
    Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of voronoi. ACM Trans. Graph. 4(2), 74–123 (1985)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Computational Geometry Theory and Application 4(2), 63–97 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hershberger, J., Suri, S.: An optimal algorithm for euclidean shortest paths in the plane. SIAM Journal on Computing 28, 2215–2256 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hoff III, K.E., Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of generalized voronoi diagrams using graphics hardware. In: Proceedings of the Sixteenth Annual Symposium on Computational Geometry (2000)Google Scholar
  13. 13.
    Kallmann, M.: Shortest paths with arbitrary clearance from navigation meshes. In: Proceedings of the Eurographics / SIGGRAPH Symposium on Computer Animation, SCA (2010)Google Scholar
  14. 14.
    Kallmann, M., Bieri, H., Thalmann, D.: Fully dynamic constrained delaunay triangulations. In: Brunnett, G., Hamann, B., Mueller, H., Linsen, L. (eds.) Geometric Modeling for Scientific Visualization, pp. 241–257. Springer, Heidelberg (2003) ISBN 3-540-40116-4Google Scholar
  15. 15.
    Kallmann, M., Thalmann, D.: Star vertices: A compact representation for planar meshes with adjacency information. Journal of Graphics Tools 6(1), 7–18 (2001)CrossRefGoogle Scholar
  16. 16.
    Lamarche, F.: TopoPlan: a topological path planner for real time human navigation under floor and ceiling constraints. Computer Graphics Forum 28 (03 2009)Google Scholar
  17. 17.
    Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Communications of ACM 22(10), 560–570 (1979)CrossRefGoogle Scholar
  18. 18.
    Mäntylä, M.: An introduction to solid modeling. Computer Science Press, Inc., New York (1987)Google Scholar
  19. 19.
    Mekni, M.: Hierarchical path planning for situated agents in informed virtual geographic environments. In: Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques, SIMUTools 2010, pp. 1–10 (2010)Google Scholar
  20. 20.
    Mitchell, J.S.B.: Shortest paths among obstacles in the plane. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, SCG 1993, pp. 308–317. ACM, New York (1993)CrossRefGoogle Scholar
  21. 21.
    Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Proceedings of the fourth Annual Symposium on Computational Geometry, SCG 1988, pp. 164–171. ACM Press, New York (1988)CrossRefGoogle Scholar
  22. 22.
    Rong, G., Tan, T.-s., Cao, T.-t.: Computing two-dimensional delaunay triangulation using graphics hardware. In: Proceedings of the Symposium on Interactive 3D Graphics and Games, I3D (2008)Google Scholar
  23. 23.
    Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996); from the First ACM Workshop on Applied Computational GeometryCrossRefGoogle Scholar
  24. 24.
    Storer, J.A., Reif, J.H.: Shortest paths in the plane with polygonal obstacles. J. ACM 41(5), 982–1012 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Subramanian, S., Klein, P., Klein, P., Rao, S., Rao, S., Rauch, M., Rauch, M.: Faster shortest-path algorithms for planar graphs. Journal of Computer and System Sciences, 27–37 (1994)Google Scholar
  26. 26.
    Sud, A., Andersen, E., Curtis, S., Lin, M.C., Manocha, D.: Real-time path planning in dynamic virtual environments using multiagent navigation graphs. IEEE Transactions on Visualization and Computer Graphics 14, 526–538 (2008)CrossRefGoogle Scholar
  27. 27.
    Wein, R., van den Berg, J.P., Halperin, D.: The visibility–voronoi complex and its applications. In: Proceedings of the Twenty-First Annual Symposium on Computational Geometry, SCG 2005, pp. 63–72. ACM, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marcelo Kallmann
    • 1
  1. 1.University of CaliforniaMercedUSA

Personalised recommendations