Advertisement

Scalable and Robust Shepherding via Deformable Shapes

  • Joseph F. Harrison
  • Christopher Vo
  • Jyh-Ming Lien
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)

Abstract

In this paper, we present a new motion planning strategy for shepherding in environments containing obstacles. This instance of the group motion control problem is applicable to a wide variety of real life scenarios, such as animal herding simulation, civil crowd control training, and oil-spill cleanup simulation. However, the problem is challenging in terms of scalability and robustness because it is dynamic, highly underactuated, and involves multi-agent coordination. Our previous work showed that high-level probabilistic motion planning algorithms combined with simple shepherding behaviors can be beneficial in situations where low-level behaviors alone are insufficient. However, inconsistent results suggested a need for a method that performs well across a wider range of environments. In this paper, we present a new method, called Deform, in which shepherds view the flock as an abstracted deformable shape. We show that our method is more robust than our previous approach and that it scales more effectively to larger teams of shepherds and larger flocks. We also show Deform to be surprisingly robust despite increasing randomness in the motion of the flock.

Keywords

Motion planning shepherding simulation group motion control manipulation deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D.M.: Virtual fencing–past, present and future. The Rangeland Journal 29, 65–78 (2007)CrossRefGoogle Scholar
  2. 2.
    Applegate, R.: Riot control: materiel and techniques. Stackpole Books (1969)Google Scholar
  3. 3.
    Aubé, F., Shield, R.: Modeling the effect of leadership on crowd flow dynamics. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 601–621. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Automat. 14(6), 926–939 (1998)CrossRefGoogle Scholar
  5. 5.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  6. 6.
    Brenner, M., Wijermans, N., Nussle, T., de Boer, B.: Simulating and controlling civilian crowds in robocup rescue. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Butler, Z., Corke, P., Peterson, R., Rus, D.: Virtual fences for controlling cows. In: Robotics and Automation. In: Proceedings of IEEE International Conference on ICRA 2004, April-1- May, vol. 5, pp. 4429–4436 (2004)Google Scholar
  8. 8.
    Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inform. Theory IT- 29, 551–559 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: Knowledge, reasoning and planning for intelligent characters. In: Computer Graphics, pp. 29–38 (1999)Google Scholar
  11. 11.
    Halloy, J.: Colleagues: Social Integration of Robots into Groups of Cockroaches to Control Self-Organized Choices. Science 318(5853), 1155–1158 (2007)CrossRefGoogle Scholar
  12. 12.
    Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive configuration spaces. Int. J. Comput. Geom. & Appl., 2719–2726 (1997)Google Scholar
  13. 13.
    Kamphuis, A., Overmars, M.: Motion planning for coherent groups of entities. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 4, pp. 3815–3822 (2004)Google Scholar
  14. 14.
    Kirkland, J., Maciejewski, A.: A simulation of attempts to influence crowd dynamics. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4328–4333 (2003)Google Scholar
  15. 15.
    Kuffner, J.J., LaValle, S.M.: RRT-Connect: An Efficient Approach to Single-Query Path Planning. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 995–1001 (2000)Google Scholar
  16. 16.
    Kwon, T., Lee, K.H., Lee, J., Takahashi, S.: Group motion editing. ACM Trans. Graph. 27(3), 1–8 (2008)CrossRefGoogle Scholar
  17. 17.
    Lai, Y.C., Chenney, S., Fan, S.: Group motion graphs. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2005, pp. 281–290. ACM, New York (2005)CrossRefGoogle Scholar
  18. 18.
    Lien, J.M., Bayazit, O.B., Sowell, R.T., Rodriguez, S., Amato, N.M.: Shepherding behaviors. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 4159–4164 (2004)Google Scholar
  19. 19.
    Ogawa, N., Oku, H., Hashimoto, K., Ishikawa, M.: Microrobotic visual control of motile cells using high-speed tracking system. IEEE Transactions on Robotics 21(4), 704–712 (2005)CrossRefGoogle Scholar
  20. 20.
    Potter, M.A., Meeden, L., Schultz, A.C.: Heterogeneity in the coevolved behaviors of mobile robots: The emergence of specialists. In: IJCAI, pp. 1337–1343 (2001)Google Scholar
  21. 21.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behaviroal model. In: Computer Graphics, pp. 25–34 (1987)Google Scholar
  22. 22.
    Schubert, J., Suzic, R.: Decision support for crowd control: Using genetic algorithms with simulation to learn control strategies. In: Military Communications Conference, MILCOM 2007, pp. 1–7. IEEE, Los Alamitos (October 2007)Google Scholar
  23. 23.
    Schultz, A.C., Grefenstette, J.J., Adams, W.: Robo-shepherd: Learning complex robotic behaviors. In: Robotics and Manufacturing: Recent Trends in Research and Applications, vol. 6, pp. 763–768. ASME Press (1996)Google Scholar
  24. 24.
    Vaughan, R.T., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in automatic flock control. J. Robot. and Autonom. Sys. 31, 109–117 (2000)CrossRefGoogle Scholar
  25. 25.
    Vo, C., Harrison, J.F., Lien, J.M.: Behavior-based motion planning for group control. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), St. Louis Missouri (2009) (to appear)Google Scholar
  26. 26.
    Vo, C., Harrison, J.F., Lien, J.M.: Behavior-based motion planning for group control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)Google Scholar
  27. 27.
    Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Composite agents. In: Gross, M., James, D. (eds.) Proceedings of EUROGRAPHICS / ACM SIGGRAPH Symposium on Computer Animation (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joseph F. Harrison
    • 1
  • Christopher Vo
    • 1
  • Jyh-Ming Lien
    • 1
  1. 1.Department of Computer ScienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations