Advertisement

Evaluating the Physical Realism of Character Animations Using Musculoskeletal Models

  • Thomas Geijtenbeek
  • Antonie J. van den Bogert
  • Ben J. H. van Basten
  • Arjan Egges
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)

Abstract

Physical realism plays an important role in the way character animations are being perceived. We present a method for evaluating the physical realism of character animations, by using musculoskeletal model simulation resulting from biomechanics research. We describe how such models can be used without the presence of external force measurements. We define two quality measures that describe principally different aspects of physical realism. The first quality measure reflects to what extent the animation obeys the Newton-Euler laws of motion. The second quality measure reflects the realism of the amount of muscle force a human would require to perform the animation. Both quality measures allow for highly detailed evaluation of the physical realism of character animations.

Keywords

Muscle Force Ground Reaction Force Physical Realism Dynamic Error Computer Animation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Welbergen, H., van Basten, B.J.H., Egges, A., Ruttkay, Z., Overmars, M.H.: Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control. Eurographics - State of the Art Reports, 45–72 (2009)Google Scholar
  2. 2.
    O’Sullivan, C., Dingliana, J., Giang, T., Kaiser, M.K.: Evaluating the visual fidelity of physically based animations. ACM TOG 22(3), 527–536 (2003)CrossRefGoogle Scholar
  3. 3.
    Reitsma, P.S.A., Pollard, N.S.: Perceptual metrics for character animation: sensitivity to errors in ballistic motion. ACM TOG 22(3), 537–542 (2003)CrossRefGoogle Scholar
  4. 4.
    Runeson, S., Frykholm, G.: Visual perception of lifted weight. Journal of exp. psychology: Human Perception and Performance 7(4), 733–740 (1981)Google Scholar
  5. 5.
    Michaels, C.F., De Vries, M.M.: Higher Order and Lower Order Variables in the Visual Perception of Relative Pulling Force. Journal of Experimental Psychology: Human Perception and Performance 24(2), 20 (1998)Google Scholar
  6. 6.
    Safonova, A., Hodgins, J.K.: Analyzing the physical correctness of interpolated human motion. In: Proc. of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 171–180 (2005)Google Scholar
  7. 7.
    Ikemoto, L., Arikan, O., Forsyth, D.: Quick transitions with cached multi-way blends. In: Proc. of the 2007 Symp. on Interactive 3D Graphics and Games, pp. 145–151. ACM, New York (2007)CrossRefGoogle Scholar
  8. 8.
    Ren, L., Patrick, A., Efros, A.A., Hodgins, J.K.: A data-driven approach to quantifying natural human motion. ACM TOG 24(3), 1090–1097 (2005)CrossRefGoogle Scholar
  9. 9.
    van Basten, B.J.H., Egges, A.: Evaluating distance metrics for animation blending. In: Proc. of the 4th Int. Conf. on Foundations of Digital Games, pp. 199–206. ACM, New York (2009)Google Scholar
  10. 10.
    Shin, H.J., Kovar, L., Gleicher, M.: Physical touch-up of human motions. In: Proc. of the 11th Pacific Conf. on Comp. Graphics and Appl., pp. 194–203 (2003)Google Scholar
  11. 11.
    Ko, H., Badler, N.I.: Animating human locomotion with inverse dynamics. In: IEEE Computer Graphics and Applications, 50–59 (1996)Google Scholar
  12. 12.
    Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics 22(2), 131–154 (2007)CrossRefGoogle Scholar
  13. 13.
    Veeger, H.E.J., Van Der Helm, F.C.T.: Shoulder function: the perfect compromise between mobility and stability. Journal of Biomechanics 40(10), 2119–2129 (2007)CrossRefGoogle Scholar
  14. 14.
    Rasmussen, J., Damsgaard, M., Surma, E., Christensen, S.T., de Zee, M., Vondrak, V.: Anybody-a software system for ergonomic optimization. In: Fifth World Congress on Structural and Multidisciplinary Optimization (2003)Google Scholar
  15. 15.
    van Den Bogert, A.J., Geijtenbeek, T., Even-Zohar, O.: Real-time estimation of muscle forces from inverse dynamics. health.uottawa.ca, 5–6 (2007)Google Scholar
  16. 16.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. on Bio-Medical Eng. 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  17. 17.
    van Der Helm, F.C.T.: A finite element musculoskeletal model of the shoulder mechanism. Journal of Biomechanics 27(5), 551–553 (1994)CrossRefGoogle Scholar
  18. 18.
    Kane, T.R., Levinson, D.A.: Dynamics online: theory and implementation with AUTOLEV. Online Dynamics, Inc. (1996)Google Scholar
  19. 19.
    Xia, Y., Feng, G.: An improved neural network for convex quadratic optimization with application to real-time beamforming. Neurocomputing 64, 359–374 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Geijtenbeek
    • 1
  • Antonie J. van den Bogert
    • 2
  • Ben J. H. van Basten
    • 1
  • Arjan Egges
    • 1
  1. 1.Games and Virtual WorldsUtrecht UniversityThe Netherlands
  2. 2.Orchard Kinetics LLCClevelandUSA

Personalised recommendations