Advertisement

Motion Capture for a Natural Tree in the Wind

  • Jie Long
  • Cory Reimschussel
  • Ontario Britton
  • Anthony Hall
  • Michael Jones
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)

Abstract

Simulating the motion of a tree in the wind is a difficult problem because of the complexity of the tree’s geometry and its associated wind dynamics. Physically-based animation of trees in the wind is computationally expensive, while noise-based approaches ignore important global effects, such as sheltering. Motion capture may help solve these problems. In this paper, we present new approaches to inferring a skeleton from tree motion data and repairing motion data using a rigid body model. While the rigid body model can be used to extract data, the data contains many gaps and errors for branches that bend. Motion data repair is critical because trees are not rigid bodies. These ideas allow the reconstruction of tree motion including global effects but without a complex physical model.

Keywords

Motion Data Minimal Span Tree Motion Capture High Wind Speed Motion Capture Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akagi, Y., Kitajima, K.: Computer animation of swaying trees based on physical simulation. Computers and Graphics 30(4), 529–539 (2006)CrossRefGoogle Scholar
  2. 2.
    Chuang, Y.Y., Goldman, D.B., Zheng, K.C., Curless, B., Salesin, D.H., Szeliski, R.: Animating pictures with stochastic motion textures, pp. 853–860. ACM, New York (2005)Google Scholar
  3. 3.
    Diener, J., Reveret, L., Fiume, E.: Hierarchical retargetting of 2d motion fields to the animation of 3d plant models. In: ACM-SIGGRAPH/EG Symposium on Computer Animation (SCA), pp. 187–195. ACM-SIGGRAPH/EUROGRAPHICS (2006)Google Scholar
  4. 4.
    Diener, J., Rodriguez, M., Baboud, L., Reveret, L.: Wind projection basis for real-time animation of trees. Computer Graphics Forum (Proceedings of EUROGRAPHICS 2009), 28(2) (March 2009)Google Scholar
  5. 5.
    Habel, R., Kusternig, A., Wimmer, M.: Physically guided animation of trees. Computer Graphics Forum (Proceedings EUROGRAPHICS 2009) 28(2), 523–532 (2009)CrossRefGoogle Scholar
  6. 6.
    Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to platt’s smo algorithm for svm classifier design. Neural Comput. 13(3), 637–649 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kirk, A., O’Brien, J., Forsyth, D.: Skeletal parameter estimation from optical motion capture data. In: CVPR 2005, pp. 782–788 (June 2005)Google Scholar
  8. 8.
    Neubert, B., Franken, T., Deussen, O.: Approximate image-based tree-modeling using particle flows. ACM Transactions on Graphics (Proc. of SIGGRAPH 2007) 26(3), 88 (2007)CrossRefGoogle Scholar
  9. 9.
    Ono, H.: Practical experience in the physical animation and destruction of trees, pp. 149–159. Springer, Budapest (1997)Google Scholar
  10. 10.
    Ota, S., Fujimoto, T., Tamura, M., Muraoka, K., Fujita, K., Chiba, N.: 1/fb noise-based real-time animation of trees swaying in wind fields. In: Proceedings of the Computer Graphics International (CGI 2003), pp. 52–59 (2003)Google Scholar
  11. 11.
    Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., Chiba, N.: A hybrid method for real-time animation of trees swaying in wind fields. The Visual Computer 20(10), 613–623 (2004)CrossRefGoogle Scholar
  12. 12.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization, pp. 185–208 (1999)Google Scholar
  13. 13.
    Prusinkiewicz, P., Mundermann, L., Karwowski, R., Lane, B.: The use of positional information in the modeling of plants. In: Proceedings of SIGGRAPH 2001, pp. 289–300 (August 2001)Google Scholar
  14. 14.
    Reche-Martinez, A., Martin, I., Drettakis, G.: Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graph. 23(3), 720–727 (2004)CrossRefGoogle Scholar
  15. 15.
    Rosenhahn, B., Brox, T., Kersting, U., Smith, D., Gurney, J., Klette, R.: A system for marker-less human motion estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 230–237. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Rudnicki, M., Burns, D.: Branch sway period of 4 tree species using 3-d motion tracking. In: Fifth Plant Biomechanics Conference, STFI-Packforsk, Stockholm, Sweden (2006)Google Scholar
  17. 17.
    Shinya, M., Fournier, A.: Stochastic motion under the influence of wind. In: EUROGRAPHICS 1992, vol. 11, pp. 119–128. Blackwell Publishers, Malden (1992)Google Scholar
  18. 18.
    Stam, J.: Stochastic dynamics: Simulating the effects of turbulence on flexible structures. In: EUROGRAPHICS 1997, vol. 16, pp. 119–128. Blackwell Publishers, Malden (1997)Google Scholar
  19. 19.
    Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 Papers, p. 87. ACM, New York (2007)Google Scholar
  20. 20.
    Wu, E., Chen, Y., Yan, T., Zhang, X.: Reconstruction and physically-based animation of trees from static images. In: Computer Animation and Simulation 1999, pp. 157–166. Springer, Heidelberg (September 1999)Google Scholar
  21. 21.
    Zhang, L., Song, C., Tan, Q., Chen, W., Peng, Q.: Quasi-physical simulation of large-scale dynamic forest scenes. In: Nishita, T., Peng, Q., Seidel, H.-P. (eds.) CGI 2006. LNCS, vol. 4035, pp. 735–742. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Zordan, V., van der Horst, N.: Mapping optical motion capture data to skeletal motion using a physical model. In: Proceedings of the 2003 ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation, pp. 245–250 (May 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jie Long
    • 1
  • Cory Reimschussel
    • 1
  • Ontario Britton
    • 1
  • Anthony Hall
    • 1
  • Michael Jones
    • 1
  1. 1.Department of Computer ScienceBrigham Young UniversityUSA

Personalised recommendations