Simulating Formations of Non-holonomic Systems with Control Limits along Curvilinear Coordinates

  • Athanasios Krontiris
  • Sushil Louis
  • Kostas E. Bekris
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)


Many games require a method for simulating formations of systems with non-trivial motion constraints, such as aircraft and boats. This paper describes a computationally efficient method for this objective, inspired by solutions in robotics, and describes how to guarantee the satisfaction of the physical constraints. The approach allows a human player to select almost an arbitrary geometric configuration for the formation and to control the aircraft as a single entity. The formation is fixed along curvilinear coordinates, defined by the curvature of the reference trajectory, resulting in naturally looking paths. Moreover, the approach supports dynamic formations and transitions from one desired shape to another. Experiments with a game engine confirm that the proposed method achieves the desired objectives.


Path Planning Flocking and Steering Behavior Physicsbased Motion Navigation and Way-finding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balch, T., Arkin, R.: Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)CrossRefGoogle Scholar
  2. 2.
    Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In: IEEE International Conference on Robotics and Automation, pp. 73–80 (April 2000)Google Scholar
  3. 3.
    Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots. Robotics and Autonomous Systems 46(2), 65–78 (2004)CrossRefGoogle Scholar
  4. 4.
    van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance. In: International Symposium on Robotics Research, ISRR (September 2009)Google Scholar
  5. 5.
    Bottesi, G., Laumond, J.P., Fleury, S.: A motion planning based video game. Tech. rep., LAAS CNRS (October 2004)Google Scholar
  6. 6.
    Brogan, D.C., Hodgins, J.K.: Group behaviors for systems with significant dynamics. Autonomous Robots 4, 137–153 (1997)CrossRefGoogle Scholar
  7. 7.
    Desai, J., Ostrowski, J., Kumar, V.J.: Modeling and control of formations of nonholonomic mobile robots. Transactions on Robotics and Aut. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  8. 8.
    Ennis, C., Peters, C., O’Sullivan, C.: Perceptual evaluation of position and orientation context rules for pedestrian formations. In: Symposium on Applied Perception in Graphics and Visualization (APGV 2008), pp. 75–82 (2008)Google Scholar
  9. 9.
    Fierro, R., Belta, C., Desai, K., Kumar, V.J.: On controlling aircraft formations. In: IEEE Conf. on Decision and Control, Orlando, FL, pp. 1065–1070 (Decmber 2001)Google Scholar
  10. 10.
    Fredslund, J., Mataric, M.J.: A general, local algorithm for robot formations. IEEE Transactions on Robotics and Automation 18(5), 846–873 (2002)CrossRefGoogle Scholar
  11. 11.
    Gayle, R., Moss, W., Lin, M.C., Manocha, D.: Multi-robot coordination using generalized social potential fields. In: ICRA, Kobe, Japan, pp. 3695–3702 (2009)Google Scholar
  12. 12.
    Geraerts, R., Kamphuis, A., Karamouzas, I., Overmars, M.: Using the corridor map method for path planning for a large number of characters. In: Egges, A., Kamphuis, A., Overmars, M. (eds.) MIG 2008. LNCS, vol. 5277, pp. 11–22. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile agents using nearest neighbor rules. IEEE Trans. on Automatic Control 8(6), 988–1001 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multirobot formations. IEEE Transactions on Robotics 22(4), 650–665 (2006)CrossRefGoogle Scholar
  15. 15.
    Lau, M., Kuffner, J.: Behavior planning for character animation. In: ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA (2005)Google Scholar
  16. 16.
    Lewis, M., Tan, K.H.: High-precision formation control of mobile robotis using virtual structures. Autonomous Robots 4(4), 387–403 (1997)CrossRefGoogle Scholar
  17. 17.
    Lien, J.M., Rodriguez, S., Malric, J.P., Amato, N.: Shepherding behaviors with multiple shepherds. In: International Conf. on Robotics and Automation (2005)Google Scholar
  18. 18.
    Michael, N., Zavlanos, M.M., Kumar, V., Pappas, G.J.: Distributed multi-robot task assignment and formation control. In: ICRA, pp. 128–133 (May 2008)Google Scholar
  19. 19.
    Patil, S., van den Berg, J., Curtis, S., Lin, M., Manocha, D.: Directing crowd simulations using navigation fields. IEEE Transactions on Visualization and Computer Graphics, TVCG (2010)Google Scholar
  20. 20.
    Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density crowd simulation. In: ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA), San Diego, CA, vol. 3, pp. 99–108 (August 3-4, 2007)Google Scholar
  21. 21.
    Snape, J., Manocha, D.: Navigating multiple simple-airplanes in 3d workspace. In: IEEE International Conference on Robotics and Automation, ICRA (2010)Google Scholar
  22. 22.
    Stylianou, S., Chrysanthou, Y.: Crowd self organization, streaming and short path smoothing. In: Computer Graphics, Visualization and Computer Vision (2006)Google Scholar
  23. 23.
    Tabuada, P., Pappas, G.J., Lima, P.: Motion feasibility of multi-agent formations. IEEE Transactions on Robotics 21(3), 387–392 (2005)CrossRefGoogle Scholar
  24. 24.
    Takahashi, S., Yoshida, K., Kwon, T., Lee, K.H., Lee, J., Shin, S.Y.: Spectral-based group formation control. Comp. Graph. Forum: Eurographics 28, 639–648 (2009)CrossRefGoogle Scholar
  25. 25.
    Tanner, H.G., Pappas, G.J., Kumar, V.J.: Leader-to-formation stability. IEEE Transactions on Robotics and Automation (2004)Google Scholar
  26. 26.
    Vo, C., Harrison, J.F., Lien, J.M.: Behavior-based motion planning for group control. In: Intern. Conf. on Intelligent Robots and Systems, St. Louis, MO (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Athanasios Krontiris
    • 1
  • Sushil Louis
    • 1
  • Kostas E. Bekris
    • 1
  1. 1.Computer Science and Engineering DepartmentUniversity of NevadaRenoUSA

Personalised recommendations