Advertisement

Path Planning for Groups Using Column Generation

  • Marjan van den Akker
  • Roland Geraerts
  • Han Hoogeveen
  • Corien Prins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)

Abstract

In computer games, one or more groups of units need to move from one location to another as quickly as possible. If there is only one group, then it can be solved efficiently as a dynamic flow problem. If there are several groups with different origins and destinations, then the problem becomes \({\cal NP}\)-hard. In current games, these problems are solved by using greedy ad hoc rules, leading to long traversal times or congestions and deadlocks near narrow passages. We present a centralized optimization approach based on Integer Linear Programming. Our solution provides an efficient heuristic to minimize the average and latest arrival time of the units.

Keywords

Path Planning Integer Linear Program Capacity Constraint Column Generation Price Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CPLEX 11.0. User’s manual. Technical report, ILOG SA, Gentilly, France (2008)Google Scholar
  2. 2.
    Bayazit, O., Lien, J.-M., Amato, N.: Better group behaviors in complex environments using global roadmaps. Artificial Life, 362–370 (2002)Google Scholar
  3. 3.
    Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations, 1st edn. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  4. 4.
    Ford Jr., L., Fulkerson, D.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ford Jr., L., Fulkerson, D.: A suggested computation for maximal multi-commodity network flows. Management Science 5, 97–101 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Geraerts, R.: Planning short paths with clearance using explicit corridors. In: IEEE International Conference on Robotics and Automation, pp. 1997–2004 (2010)Google Scholar
  7. 7.
    Ghrist, R., O’Kane, J., LaValle, S.: Pareto optimal coordination on roadmaps. In: International Workshop on the Algorithmic Foundations of Robotics, pp. 171–186 (2004)Google Scholar
  8. 8.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)CrossRefGoogle Scholar
  9. 9.
    Kamphuis, A., Overmars, M.: Finding paths for coherent groups using clearance. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 19–28 (2004)Google Scholar
  10. 10.
    Karamouzas, I., Heil, P., van Beek, P., Overmars, M.: A predictive collision avoidance model for pedestrian simulation. In: Egges, A. (ed.) MIG 2009. LNCS, vol. 5884, pp. 41–52. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Latombe, J.-C.: Robot Motion Planning. Kluwer, Dordrecht (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    LaValle, S., Hutchinson, S.: Optimal motion planning for multiple robots having independent goals. Transaction on Robotics and Automation 14, 912–925 (1998)CrossRefGoogle Scholar
  14. 14.
    Li, Y.: Real-time motion planning of multiple agents and formations in virtual environments. PhD thesis, Simon Fraser University (2008)Google Scholar
  15. 15.
    Peng, J., Akella, S.: Coordinating multiple robots with kinodynamic constraints along specified paths. International Journal of Robotics Research 24, 295–310 (2005)CrossRefGoogle Scholar
  16. 16.
    Rabin, S.: AI Game Programming Wisdom 2. Charles River Media Inc., Hingham (2004)Google Scholar
  17. 17.
    Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21, 25–34 (1987)CrossRefGoogle Scholar
  18. 18.
    Sánchez, G., Latombe, J.-C.: Using a PRM planner to compare centralized and decoupled planning for multi-robot systems. In: IEEE International Conference on Robotics and Automation, pp. 2112–2119 (2002)Google Scholar
  19. 19.
    Schwartz, J., Sharir, M.: On the piano movers’ problem: III. Coordinating the motion of several independent bodies: The special case of circular bodies moving amidst polygonal obstacles. International Journal of Robotics Research 2, 46–75 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Silver, D.: Cooperative pathfinding. In: Artificial Intelligence for Interactive Digital Entertainment, pp. 117–122 (2005)Google Scholar
  21. 21.
    Siméon, T., Leroy, S., Laumond, J.-P.: Path coordination for multiple mobile robots: A resolution complete algorithm. IEEE Transactions on Robotics and Automation 18, 42–49 (2002)CrossRefGoogle Scholar
  22. 22.
    van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, pp. 1928–1935 (2008)Google Scholar
  23. 23.
    van den Berg, J., Overmars, M.: Prioritized motion planning for multiple robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2217–2222 (2005)Google Scholar
  24. 24.
    Wilkinson, W.: An algorithm for universal maximal dynamic flows in a network. Operations Research 19, 1602–1612 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wolsey, L.: Integer Programming. Wiley, New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marjan van den Akker
    • 1
  • Roland Geraerts
    • 1
  • Han Hoogeveen
    • 1
  • Corien Prins
    • 1
  1. 1.Institute of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations