Defining Process Performance Indicators: An Ontological Approach

  • Adela del-Río-Ortega
  • Manuel Resinas
  • Antonio Ruiz-Cortés
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6426)


It is increasingly important to evaluate the performance of business processes. A key instrument to carry out this evaluation is by means of Process Performance Indicators (PPIs) as suggested in many methodologies and frameworks like, for instance, COBIT, ITIL or EFQM. As a consequence, it is convenient to integrate the management of PPIs into the whole business process lifecycle from its design to its evaluation. In this paper, we focus on the definition of PPIs as a necessary step to achieve that integration. Unfortunately, current proposals are not able to specify several usual types of PPIs, specially those related to data, and are not well designed to enable the automated analysis of PPIs at design-time. In this paper, we present an ontology for the definition of process performance indicators that overcomes this issue, explicitly defines the relationships between the indicators and the elements defined in a business process modelled in BPMN, and enables the analysis of PPIs at design-time. Furthermore, this ontology has been validated by means of several real-world scenarios.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    del Río-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Towards modelling and tracing key performance indicators in business processes. In: II Taller sobre Procesos de Negocio e Ingeniería de Servicios, PNIS 2009 (2009)Google Scholar
  3. 3.
    OMG: Business process modeling notation (BPMN) v2.0 (2009)Google Scholar
  4. 4.
    W3C OWL Working Group: Owl 2 web ontology language (2009)Google Scholar
  5. 5.
    Brockmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual modeling of OWL DL ontologies using UML. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 198–213. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Pedrinaci, C., Lambert, D., Wetzstein, B., van Lessen, T., Cekov, L., Dimitrov, M.: Sentinel: a semantic business process monitoring tool. In: OBI, p. 1 (2008)Google Scholar
  7. 7.
    Abramowicz, W., Filipowska, A., Kaczmarek, M., Pedrinaci, C., Starzecka, M.A.W.: Organization structure description for the needs of semantic business process management. In: 3rd international Workshop on Semantic Business Process Management colocated with 5th European Semantic Web Conference (2008)Google Scholar
  8. 8.
    Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically enhanced business process modelling notation. In: Proceedings of SBPM 2007 Semantic Process and Product Lifecycle Management in conjunction with the 3rd European Semantic Web Conference, ESWC 2007 (2007)Google Scholar
  9. 9.
    Pedrinaci, C., Domingue, J., Alves de Medeiros, A.K.: A core ontology for business process analysis. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 49–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators. In: Information Systems (2009)Google Scholar
  11. 11.
    Garcia, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M., Genero, M.: Towards a consistent terminology for software measurement. Information & Software Technology (48), 631–644 (2006)Google Scholar
  12. 12.
    Mayerl, C., Hüner, K., Gaspar, J.U., Momm, C., Abeck, S.: Definition of metric dependencies for monitoring the impact of quality of services on quality of processes. In: Second IEEE/IFIP International Workshop on Business-driven IT Management (Munich), pp. 1–10 (2007)Google Scholar
  13. 13.
    Castellanos, M., Casati, F., Shan, M.C., Dayal, U.: ibom: a platform for intelligent business operation management. In: Proceedings of 21st International Conference on Data Engineering, pp. 1084–1095. Hewlett-Packard Laboratories (2005)Google Scholar
  14. 14.
    Momm, C., Malec, R., Abeck, S.: Towards a model-driven development of monitored processes. Wirtschaftsinformatik (2), 319–336 (2007)Google Scholar
  15. 15.
    Wetzstein, B., Ma, Z., Leymann, F.: Towards Measuring Key Performance Indicators of Semantic Business Processes. In: 11th International Conference on Business Information Systems (BIS 2008) & Innsbruck, Austria, pp. 227–238 (2008)Google Scholar
  16. 16.
    Awad, A., Decker, G., Weske, M.: Efficient compliance checking using bpmn-q and temporal logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Decker, G., Overdick, H., Weske, M.: Oryx - An Open Modeling Platform for the BPM Community. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 382–385. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Popova, V., Sharpanskykh, A.: Formal analysis of executions of organizational scenarios based on process-oriented specifications. In: Applied Intelligence (2009)Google Scholar
  19. 19.
    Popova, V., Sharpanskykh, A.: Formal Goal-based Modeling of Organizationss. In: MSVVEIS, pp. 19–28 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adela del-Río-Ortega
    • 1
  • Manuel Resinas
    • 1
  • Antonio Ruiz-Cortés
    • 1
  1. 1.Universidad de SevillaSpain

Personalised recommendations