The Biconnected Verification of Workflow Nets

  • Artem Polyvyanyy
  • Matthias Weidlich
  • Mathias Weske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6426)

Abstract

Formal representations of business processes are used for analysis of the process behavior. Workflow nets are a widely used formalism for describing the behavior of business processes. Structure theory of processes investigates the relation between the structure of a model and its behavior. In this paper, we propose to employ the connectivity property of workflow nets as an angle to their structural analysis. In particular, we show how soundness verification can be organized using biconnected components of a workflow net. This allows for efficient identification and localization of flaws in the behavior of workflow nets and for supporting process analysts with diagnostic information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE Trans. Software Eng. 30(7), 437–447 (2004)CrossRefGoogle Scholar
  3. 3.
    Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Aalst, W.: The application of Petri nets to workflow management. Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  5. 5.
    Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. ACM Commun. 16(6), 372–378 (1973)CrossRefGoogle Scholar
  6. 6.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  7. 7.
    Valette, R.: Analysis of petri nets by stepwise refinements. J. Comput. Syst. Sci. 18(1), 35–46 (1979)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Aalst, W.: Workflow verification: Finding control-flow errors using petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) BPM 2000. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Hopcroft, J., Tarjan, R.: Dividing a graph into triconnected components. SIAM Journal on Computing 2(3), 135–158 (1973)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Polyvyanyy, A., Vanhatalo, J., Voelzer, H.: Simplified computation and generalization of the refined process structure tree. In: WS-FM, Hoboken, NJ, US, (to appear, September 2010)Google Scholar
  12. 12.
    Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of causal behavioural profiles using structural decomposition. In: Lilius, J., Penczek, W. (eds.) Applications and Theory of Petri Nets. LNCS, vol. 6128, pp. 63–83. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Instantaneous soundness checking of industrial business process models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 278–293. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for business process models through SESE decomposition. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  17. 17.
    Polyvyanyy, A.: Structural abstraction of process specifications. In: ZEUS (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Artem Polyvyanyy
    • 1
  • Matthias Weidlich
    • 1
  • Mathias Weske
    • 1
  1. 1.Business Process Technology GroupHasso Plattner Institute at the University of PotsdamPotsdamGermany

Personalised recommendations