A Distributed Many-Camera System for Multi-person Tracking

  • Claus Lenz
  • Thorsten Röder
  • Martin Eggers
  • Sikandar Amin
  • Thomas Kisler
  • Bernd Radig
  • Giorgio Panin
  • Alois Knoll
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6439)

Abstract

This article presents a modular, distributed and scalable many-camera system designed towards tracking multiple people simultaneously in a natural human-robot interaction scenario set in an apartment mock-up. The described system employs 40 high-resolution cameras networked to 15 computers, redundantly covering an area of approximately 100 square meters. The unique scale and set-up of the system require novel approaches for vision-based tracking, especially with respect to the transfer of targets between the different tracking processes while preserving the target identities. We propose an integrated approach to cope with these challenges, and focus on the system architecture, the target information management, the calibration of the cameras and the applied tracking methodologies themselves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brščić, D., Eggers, M., Rohrmüller, F., Kourakos, O., Sosnowski, S., Althoff, D., Lawitzky, M., Mörtl, A., Rambow, M., Koropouli, V., Hernández, J.M., Zang, X., Wang, W., Wollherr, D., Kühnlenz, K., Mayer, C., Kruse, T., Kirsch, A., Blume, J., Bannat, A., Rehrl, T., Wallhoff, F., Lorenz, T., Basili, P., Lenz, C., Röder, T., Panin, G., Maier, W., Hirche, S., Buss, M., Beetz, M., Radig, B., Schubö, A., Glasauer, S., Knoll, A., Steinbach, E.: Multi Joint Action in CoTeSys - setup and challenges. Tech. Rep. CoTeSys-TR-10-01, CoTeSys Cluster of Excelence: Technische Universität München & Ludwig-Maximilians-Universität München, Munich, Germany (June 2010)Google Scholar
  2. 2.
    Chamberlain, G.: GigE Vision: standard route to video over IP. Industrial Ethernet Book (33), 35 (July 2006)Google Scholar
  3. 3.
    Hengstler, S., Aghajan, H., Goldsmith, A.: Application-Oriented Design of Smart Camera Networks. In: First ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2007, pp. 12–19 (2007)Google Scholar
  4. 4.
    Lanz, O., Chippendale, P., Brunelli, R.: An appearance-based particle filter for visual tracking in smart rooms (2007)Google Scholar
  5. 5.
    Ogden, C., Fryar, C., Carroll, M., Flegal, K.: Mean body weight, height, and body mass index, united states 1960–2002. Advance data from vital and health statistics (347) (2004), http://www.cdc.gov/nchs/data/ad/ad347.pdf
  6. 6.
    Panin, G., Röder, T., Knoll, A.: Integrating robust likelihoods with monte-carlo filters for multi-target tracking. In: International Workshop on Vision, Modeling and Visualization (VMV), Konstanz, Germany (October 2008)Google Scholar
  7. 7.
    Patricio, M.A., Carbo, J., Perez, O., Garcia, J., Molina, J.: Multi-agent framework in visual sensor networks. EURASIP Journal on Advances in Signal Processing(Print) 2007(7) (2007)Google Scholar
  8. 8.
    Visualeyez VZ 4000 (2009), http://www.ptiphoenix.com/VZmodels.php
  9. 9.
    Rinner, B., Wolf, W.: An introduction to distributed smart cameras. Proceedings of the IEEE 96(10), 1565–1575 (2008)CrossRefGoogle Scholar
  10. 10.
    Rocha, L., Velho, L., Carvalho, P.C.P.: Motion reconstruction using moments analysis. In: SIBGRAPI 2004: Proceedings of the Computer Graphics and Image Processing, XVII Brazilian Symposium, pp. 354–361. IEEE Computer Society, Washington (2004)CrossRefGoogle Scholar
  11. 11.
    Segvic, S., Ribaric, S.: A software architecture for distributed visual tracking in a global vision localization system, p. 365 (2003)Google Scholar
  12. 12.
    Teixeira, T., Lymberopoulos, D., Culurciello, E., Aloimonos, Y., Savvides, A.: A lightweight camera sensor network operating on symbolic information. In: Proceedings of 1st Workshop on Distributed Smart Cameras, Held in Conjunction with ACM SenSys. Citeseer (2006)Google Scholar
  13. 13.
    Valera, M., Velastin, S.: Intelligent distributed surveillance systems: a review. IEEE Proceedings Vision, Image and Signal Processing 152(2), 192–204 (2005)CrossRefGoogle Scholar
  14. 14.
    Yamasaki, T., Nishioka, Y., Aizawa, K.: Interactive retrieval for multi-camera surveillance systems featuring spatio-temporal summarization. In: MM 2008: Proceeding of the 16th ACM International Conference on Multimedia, pp. 797–800. ACM, New York (2008)Google Scholar
  15. 15.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 2 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Claus Lenz
    • 1
  • Thorsten Röder
    • 1
  • Martin Eggers
    • 2
  • Sikandar Amin
    • 2
  • Thomas Kisler
    • 2
  • Bernd Radig
    • 2
  • Giorgio Panin
    • 1
  • Alois Knoll
    • 1
  1. 1.Robotics and Embedded Systems LabTUMGermany
  2. 2.Intelligent Autonomous Systems GroupTUMGermany

Personalised recommendations