An Agent-Based Approach to Care in Independent Living

  • Boštjan Kaluža
  • Violeta Mirchevska
  • Erik Dovgan
  • Mitja Luštrek
  • Matjaž Gams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6439)

Abstract

This paper presents a multi-agent system for the care of elderly people living at home on their own, with the aim to prolong their independence. The system is composed of seven groups of agents providing a reliable, robust and flexible monitoring by sensing the user in the environment, reconstructing the position and posture to create the physical awareness of the user in the environment, reacting to critical situations, calling for help in the case of an emergency, and issuing warnings if unusual behavior is detected. The system has been tested during several on-line demonstrations.

Keywords

Multi-agent system fall detection disability detection independent living remote care 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AlertOne Services Inc, iLifeTM Fall Detection Sensor, http://www.falldetection.com
  2. 2.
    Bourke, A.K., Lyons, G.M.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical Engineering & Physics 30(1), 84–90 (2008)CrossRefGoogle Scholar
  3. 3.
    Cervantes, L., Lee, Y.-S., Yang, H., Ko, S.-H., Lee, J.: Agent-based intelligent decision support for the home healthcare environment. In: Szczuka, M.S., Howard, D., Ślęzak, D., Kim, H.-k., Kim, T.-h., Ko, I.-s., Lee, G., Sloot, P.M.A. (eds.) ICHIT 2006. LNCS (LNAI), vol. 4413, pp. 414–424. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Doughty, K., Lewis, R., McIntosh, A.: The design of a practical and reliable fall detector for community and institutional telecare. Journal of Telemedicine and Telecare 6, 150–154 (2000)CrossRefGoogle Scholar
  6. 6.
    Fu, Z., Culurciello, E., Lichtsteiner, P., Delbruck, T.: Fall detection using an address-event temporal contrast vision sensor. In: Proceedengs of the IEEE International Symposium on Circuits and Systems, pp. 424–427 (2008)Google Scholar
  7. 7.
    Fiol-Roig, G., Arellano, D., Perales, F.J.L., Bassa, P., Zanlongo, M.: The intelligent butler: A virtual agent for disabled and elderly people assistance. In: DCAI. Advances in Soft Computing, vol. 50, pp. 375–384. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Isern, D., Sanchez, D., Moreno, A.: Agents applied in health care: A review. International Journal of Medical Informatics 79(3), 145–166 (2010)CrossRefGoogle Scholar
  9. 9.
    Kangas, M., Konttila, A., Winblad, I., Jamsa, T.: Determination of simple thresholds for accelerometry-based parameters for fall detection. In: Proceedings of the 29th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, pp. 1367–1370 (2007)Google Scholar
  10. 10.
    Koutkias, V., Chouvarda, I., Maglaveras, N.: A multiagent system enhancing home-care health services for chronic disease management. IEEE Transactions on Information Technology in Biomedicine 9(4), 528–537 (2005)CrossRefGoogle Scholar
  11. 11.
    Lustrek, M., Kaluza, B.: Fall detection and activity recognition with machine learning. Informatica 33(2), 197–204 (2009)Google Scholar
  12. 12.
    Lustrek, M., Kaluza, B., Dovgan, E., Pogorelc, E., Gams, M.: Behavior analysis based on coordinates of body tags. In: Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009. LNCS, vol. 5859, pp. 14–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Means, R., Richards, S., Smith, R.: Community Care: Policy and Practice. Palgrave MacMillan, Basingstoke (2008)CrossRefGoogle Scholar
  14. 14.
    Mirchevska, V., Lustrek, M., Gams, M.: Combining machine learning and expert knowledge for classifying human posture. In: Proceedings of the Eighteenth International Electrotechnical and Computer Science Conference, vol. B, pp. 183–186 (2009)Google Scholar
  15. 15.
    Pan, J.-I., Yung, C.-Y., Liang, C.-C., Lai, L.-F.: An intelligent homecare emergency service system for elder falling. In: World Congress on Medical Physics and Biomedical Engineering, pp. 424–428. Springer, Heidelberg (2006)Google Scholar
  16. 16.
    Steggles, P., Gschwind, S.: Ubisense – a smart space platform. Technical report, Ubisense (2005)Google Scholar
  17. 17.
    Tablado, A., Illarramendi, A., Bagues, M.I., Bermudez, J., Goni, A.: Aingeru: An innovating system for tele-assistance of elderly people. Journal on Information Technology in Healthcare 2(3), 205–214 (2004)Google Scholar
  18. 18.
    Willis, D.J.: Ambulation Monitoring and Fall Detection System using Dynamic Belief Networks. PhD Thesis, School of Computer Science and Software Engineering, Monash University (2000)Google Scholar
  19. 19.
    Zenio: Zenio Fall Detector, http://www.zenio.be/product/8.html
  20. 20.
    Zhang, T., Wang, J., Liu, J., Hou, P.: Fall detection by wearable-sensor and one-class SVM algorithm. In: Lecture Notes in Control and Information Science, pp. 858–863 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Boštjan Kaluža
    • 1
  • Violeta Mirchevska
    • 2
  • Erik Dovgan
    • 1
  • Mitja Luštrek
    • 1
  • Matjaž Gams
    • 1
  1. 1.Department of Intelligent SystemsJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Result, d.o.o.LjubljanaSlovenia

Personalised recommendations