Making the Right Cut in Model Checking Data-Intensive Timed Systems
- 1 Citations
- 770 Downloads
Abstract
The success of industrial-scale model checkers such as Uppaal [3] or NuSMV [12] relies on the efficiency of their respective symbolic state space representations. While difference bound matrices (DBMs) are effective for representing sets of clock values, binary decision diagrams (BDDs) can efficiently represent huge discrete state sets. In this paper, we introduce a simple general framework for combining both data structures, enabling a joint symbolic representation of the timed state sets in the reachability fixed point construction. In contrast to other approaches, our technique is robust against intricate interdependencies between clock constraints and the location information. Especially in the analysis of models with only few clocks, large constants, and a huge discrete state space (such as, e.g., data-intensive communication protocols), our technique turns out to be highly effective. Additionally, our framework allows to employ existing highly-optimized implementations for DBMs and BDDs without modifications. Using a prototype implementation, we are able to verify a central correctness property of the physical layer protocol of the FlexRay communication protocol [15] taking an unreliable physical layer into account.
Keywords
Model Check Transition Relation Reachable State Discrete Transition Binary Decision DiagramPreview
Unable to display preview. Download preview PDF.
References
- 1.Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
- 3.Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 4.Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reachability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 5.Bengtsson, J.: Clocks, DBM, and States in Timed Systems. PhD thesis, Uppsala University (2002)Google Scholar
- 6.Beyer, D.: Improvements in BDD-based reachability analysis of timed automata. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 318–343. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 7.Beyer, S., Böhm, P., Gerke, M., Hillebrand, M.A., der Rieden, T.I., Knapp, S., Leinenbach, D., Paul, W.J.: Towards the formal verification of lower system layers in automotive systems. In: ICCD, pp. 317–326. IEEE Computer Society, Los Alamitos (2005)Google Scholar
- 8.Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify, compile, run: Hardware from psl. Electr. Notes Theor. Comput. Sci. 190(4), 3–16 (2007)CrossRefGoogle Scholar
- 9.Bozga, M., Maler, O., Pnueli, A., Yovine, S.: Some progress in the symbolic verification of timed automata. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 179–190. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- 10.Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
- 11.Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)CrossRefzbMATHGoogle Scholar
- 12.Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic model checker. STTT 2(4), 410–425 (2000)CrossRefzbMATHGoogle Scholar
- 13.Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)CrossRefGoogle Scholar
- 14.Dill, D.L., Wong-Toi, H.: Verification of real-time systems by successive over and under approximation. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 409–422. Springer, Heidelberg (1995)CrossRefGoogle Scholar
- 15.FlexRay Consortium: FlexRay Communications System Protocol Specification Version 2.1 Revision A (2005)Google Scholar
- 16.Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Fully symbolic model checking of timed systems using difference decision diagrams. Electr. Notes Theor. Comput. Sci. 23(2) (1999)Google Scholar
- 17.Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking based on AIGs, BDD sweeping, and quantifier scheduling. In: FMCAD, pp. 89–96. IEEE Computer Society, Los Alamitos (2006)Google Scholar
- 18.Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: SIS: A system for sequential circuit synthesis. Technical Report UCB/ERL M92/41, EECS Department, University of California, Berkeley (1992)Google Scholar
- 19.Seshia, S.A., Bryant, R.E.: Unbounded, fully symbolic model checking of timed automata using boolean methods. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 154–166. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 20.Somenzi, F.: CUDD: CU Decision Diagram package release 2.4.2 (2009)Google Scholar
- 21.Wang, F.: Efficient verification of timed automata with BDD-like data structures. STTT 6(1), 77–97 (2004)CrossRefGoogle Scholar
- 22.Yamane, S., Nakamura, K.: Development and evaluation of symbolic model checker based on approximation for real-time systems. Systems and Computers in Japan 35(10), 83–101 (2004)CrossRefGoogle Scholar
- 23.Yovine, S.: Kronos: A verification tool for real-time systems. STTT 1(1-2), 123–133 (1997)CrossRefzbMATHGoogle Scholar