Advertisement

Argumentation-Based Preference Modelling with Incomplete Information

  • Wietske Visser
  • Koen V. Hindriks
  • Catholijn M. Jonker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6214)

Abstract

No intelligent decision support system functions even remotely without knowing the preferences of the user. A major problem is that the way average users think about and formulate their preferences does not match the utility-based quantitative frameworks currently used in decision support systems. For the average user qualitative models are a better fit. This paper presents an argumentation-based framework for the modelling of, and automated reasoning about multi-issue preferences of a qualitative nature. The framework presents preferences according to the lexicographic ordering that is well-understood by humans. The main contribution of the paper is that it shows how to reason about preferences when only incomplete information is available. An adequate strategy is proposed that allows reasoning with incomplete information and it is shown how to incorporate this strategy into the argumentation-based framework for modelling preferences.

Keywords

Qualitative Preferences Argumentation Incomplete Information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation. In: Proc. ICMAS (2000)Google Scholar
  2. 2.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial Intelligence 171, 619–641 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boutilier, C.: Toward a logic for qualitative decision theory. In: Proc. KR, pp. 75–86 (1994)Google Scholar
  4. 4.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21, 135–191 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brewka, G.: A rank based description language for qualitative preferences. In: Proc. ECAI (2004)Google Scholar
  6. 6.
    Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artificial Intelligence 157(1-2), 203–237 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness of propositional languages for preference representation. In: Proc. KR, pp. 203–212 (2004)Google Scholar
  8. 8.
    Doyle, J., Thomason, R.H.: Background to qualitative decision theory. AI Magazine 20(2), 55–68 (1999)Google Scholar
  9. 9.
    Dubois, D., Prade, H.: Possibility theory as a basis for qualitative decision theory. In: Proc. IJCAI (1995)Google Scholar
  10. 10.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kaci, S., van der Torre, L.: Preference-based argumentation: Arguments supporting multiple values. Int. J. of Approximate Reasoning 48, 730–751 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value trade-offs. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. PhD thesis, Universiteit van Amsterdam (2008)Google Scholar
  14. 14.
    Prakken, H.: A study of accrual of arguments, with applications to evidential reasoning. In: Proc. ICAIL, pp. 85–94 (2005)Google Scholar
  15. 15.
    Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, L.: Argumentation-based negotiation. Knowledge Engineering Review 18(4), 343–375 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wietske Visser
    • 1
  • Koen V. Hindriks
    • 1
  • Catholijn M. Jonker
    • 1
  1. 1.Man Machine Interaction GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations