Advertisement

Group Signature Implies PKE with Non-interactive Opening and Threshold PKE

  • Keita Emura
  • Goichiro Hanaoka
  • Yusuke Sakai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6434)

Abstract

In this paper, we show that both Public Key Encryption (PKE) with non-interactive opening and threshold PKE can be constructed from an arbitrary group signature scheme which is secure in the dynamic group setting. This result implies that group signature (in dynamic groups) is a significantly strong cryptographic primitive, since the above PKEs with additional functionalities are already much stronger primitives than the standard chosen-ciphertext secure PKE, which is itself recognized as a very powerful cryptographic tool. We can interpret our result as meaning that designing secure group signatures is significantly harder than many other ordinary cryptographic primitives.

Keywords

Security Requirement Random Oracle Secret Share Scheme Challenge Ciphertext Decryption Oracle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Tsudik, G.: Some open issues and new directions in group signatures. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Beimel, A., Franklin, M.K.: Weakly-private secret sharing schemes. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 253–272. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Boldyreva, A., Fischlin, M., Palacio, A., Warinschi, B.: A closer look at PKI: Security and efficiency. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 458–475. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: ACM Conference on Computer and Communications Security, pp. 320–329 (2005)Google Scholar
  10. 10.
    Bringer, J., Chabanne, H., Pointcheval, D., Zimmer, S.: An application of the Boneh and Shacham group signature scheme to biometric authentication. In: Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 219–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  12. 12.
    Chen, L., Pedersen, T.P.: New group signature schemes (extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Damgård, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-key encryption with non-interactive opening. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Galindo, D.: Breaking and repairing Damgård et al. public key encryption scheme with non-interactive opening. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 389–398. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis, M., Schröder, D.: Public-key encryption with non-interactive opening: New constructions and stronger definitions. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 333–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Goldreich, O.: Foundations of Cryptography. Basic Tools, vol. 1. Cambridge University Press, New York (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press, New York (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Isshiki, T., Mori, K., Sako, K., Teranishi, I., Yonezawa, S.: Using group signatures for identity management and its implementation. In: Digital Identity Management, pp. 73–78 (2006)Google Scholar
  23. 23.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-secure PKE from identity-based techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Nakanishi, T., Sugiyama, Y.: An efficient anonymous survey for attribute statistics using a group signature scheme with attribute tracing. IEICE Transactions 86-A(10), 2560–2568 (2003)Google Scholar
  26. 26.
    Ohtake, G., Fujii, A., Hanaoka, G., Ogawa, K.: On the theoretical gap between group signatures with and without unlinkability. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 149–166. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC, pp. 387–394 (1990)Google Scholar
  28. 28.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)Google Scholar
  29. 29.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhou, S., Lin, D.: Shorter verifier-local revocation group signatures from bilinear maps. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 126–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Keita Emura
    • 1
  • Goichiro Hanaoka
    • 2
  • Yusuke Sakai
    • 3
  1. 1.Center for Highly Dependable Embedded Systems TechnologyJapan Advanced Institute of Science and Technology (JAIST)NomiJapan
  2. 2.Research Center for Information Security (RCIS)National Institute of Advanced Industrial Science and Technology (AIST)ChiyodaJapan
  3. 3.Graduate School of Information and Communication EngineeringThe University of Electro-CommunicationsChofu-shiJapan

Personalised recommendations