Advertisement

Recognizing Textual Entailment Using a Machine Learning Approach

  • Miguel Angel Ríos Gaona
  • Alexander Gelbukh
  • Sivaji Bandyopadhyay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6438)

Abstract

We present our experiments on Recognizing Textual Entailment based on modeling the entailment relation as a classification problem. As features used to classify the entailment pairs we use a symmetric similarity measure and a non-symmetric similarity measure. Our system achieved an accuracy of 66% on the RTE-3 development dataset (with 10-fold cross validation) and accuracy of 63% on the RTE-3 test dataset.

Keywords

Recognizing Textual Entailment text similarity measures non-symmetric measures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castro-Sánchez, N.A., Sidorov, G.: Analysis of Definitions of Verbs in an Explanatory Dictionary for Automatic Extraction of Actants based on Detection of Patterns. In: Hopfe, C.J., Rezgui, Y., Métais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS, vol. 6177, pp. 233–239. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Corley, C., Mihalcea, R.: Measuring the semantic similarity of texts. In: Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, Ann Arbor (2005)Google Scholar
  3. 3.
    Dagan, I., Glickman, O.: Probabilistic textual entailment: Generic applied modeling of language variability. In: PASCAL workshop on Text Understanding and Mining (2004); Monz, C., de Rijke, M.: Light-Weight Entailment Checking for Computational Semantic. In: Blackburn, P., Kohlhase, M. (eds.) Proceedings ICoS-3 (2001)Google Scholar
  4. 4.
    De Salvo Braz, R., Girju, R., Punyakanok, V., Frentiu, D.M.: An Inference Model for Word Sense Disambiguation. In: Proceedings of KEPT 2007, Knowledge Engineering Principles and Techniques, Workshop on Recognising Textual Entailment, vol. I (2007)Google Scholar
  5. 5.
    Ferrés, D., Rodrí́guez, H.: Machine Learning with Semantic-Based Dis-tances Between Sentences for Textual Entailment. In: Proceedings of the Third Challenge Workshop Recognising Textual Entailment, Prague, Czech Republic (2007)Google Scholar
  6. 6.
    Glickman, O., Dagan, I., Koppel, M.: Web Based Probabilistic Textual Entailment. In: Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment (2005)Google Scholar
  7. 7.
    Hobbs, J.R.: Ontological promiscuity. In: Proceedings of the 23rd annual meeting on Association for Computational Linguistics (1985)Google Scholar
  8. 8.
    Inkpen, D., Kipp, D., Nastase, V.: Machine Learning Experiments for Textual Entailment. In: Proceedings of the Second Challenge Workshop Recognising Textual Entailment, Venice, Italy, April 10, pp. 17–20 (2006)Google Scholar
  9. 9.
    Kouylekov, M., Magnini, B.: Tree Edit Distance for Recognizing Textual Entailment: Estimating the Cost of Insertion. In: Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, Venice, Italy (2006)Google Scholar
  10. 10.
    Li, B., Irwin, J., Garcia, E.V., Ram, A.: Machine Learning Based Semantic Inference: Experiments and Observations at RTE-3. In: Proceedings of the Third Challenge Workshop Recognising Textual Entailment, Prague, Czech Republic (2007)Google Scholar
  11. 11.
    Malakasiotis, P., Androutsopoulos, I.: Learning Textual Entailment using SVMs and String Similarity Measures. In: Proceedings of the Third Challenge Workshop Recognising Textual Entailment, Prague, Czech Republic (2007)Google Scholar
  12. 12.
    Pérez, D., Alfonseca, E.: Application of the Bleu algorithm for recognising textual entailments. In: Proceedings of the First Challenge Workshop Recognising Textual Etailment, Southampton, U.K (2005)Google Scholar
  13. 13.
    Ríos, M., Gelbukh, A., Bandyopadhyay, S.: Recognizing Textual Entailment with Statistical Methods. In:MCPR 2010, 2nd Mexican Conference on Pattern Recognition (2010) (to be published)Google Scholar
  14. 14.
    Tatar, D., Gabriela, S., Andreea-Diana, M., Rada, M.: Textual Entailment as a Directional Relation. Journal of Research and Practice in Information Technology (2009)Google Scholar
  15. 15.
    Witten, H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Miguel Angel Ríos Gaona
    • 1
  • Alexander Gelbukh
    • 1
  • Sivaji Bandyopadhyay
    • 2
  1. 1.Center for Computing ResearchNational Polytechnic InstituteMexico
  2. 2.Computer Science & Engineering DepartmentJadavpur UniversityKolkataIndia

Personalised recommendations