Scheme-Based Synthesis of Inductive Theories

  • Omar Montano-Rivas
  • Roy McCasland
  • Lucas Dixon
  • Alan Bundy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6437)


We describe an approach to automatically invent/explore new mathematical theories, with the goal of producing results comparable to those produced by humans, as represented, for example, in the libraries of the Isabelle proof assistant. Our approach is based on ‘schemes’, which are terms in higher-order logic. We show that it is possible to automate the instantiation process of schemes to generate conjectures and definitions. We also show how the new definitions and the lemmata discovered during the exploration of the theory can be used not only to help with the proof obligations during the exploration, but also to reduce redundancies inherent in most theory formation systems. We implemented our ideas in an automated tool, called IsaScheme, which employs Knuth-Bendix completion and recent automatic inductive proof tools. We have evaluated our system in a theory of natural numbers and a theory of lists.


Mathematical theory exploration schemes theorem proving term rewriting termination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berghofer, S., Nipkow, T.: Random Testing in Isabelle/HOL. In: SEFM, pp. 230–239 (2004)Google Scholar
  2. 2.
    Buchberger, B.: Algorithm Supported Mathematical Theory Exploration: A Personal View and Stragegy. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 236–250. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Buchberger, B., Craciun, A., Jebelean, T., Kovács, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M.: Theorema: Towards computer-aided mathematical theory exploration. J. Applied Logic 4(4), 470–504 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for Mathematical Reasoning. Cambridge Tracts in Theoretical Computer Science, vol. 56. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Colton, S.: Automated Theory Formation in Pure Mathematics. PhD thesis, Division of Informatics, University of Edinburgh (2001)Google Scholar
  6. 6.
    Craciun, A., Hodorog, M.: Decompositions of Natural Numbers: From A Case Study in Mathematical Theory Exploration. In: SYNASC 2007 (2007)Google Scholar
  7. 7.
    Dershowitz, N.: Hierachical Termination. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 89–105. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Dixon, L., Fleuriot, J.D.: IsaPlanner: A Prototype Proof Planner in Isabelle. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Giesl, J., Schneider-kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination Proofs in the Dependency Pair Framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Johansson, M., Dixon, L., Bundy, A.: Conjecture Synthesis for Inductive Theories. Journal of Automated Reasoning (2010) (to appear)Google Scholar
  11. 11.
    Krauss, A.: Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD thesis, Dept. of Informatics, T. U. München (2009)Google Scholar
  12. 12.
    Lenat, D.B.: AM: An Artificial Intelligence approach to discovery in Mathematics as Heuristic Search. In: Knowledge-Based Systems in Artificial Intelligence (1982)Google Scholar
  13. 13.
    McCasland, R., Bundy, A., Smith, P.F.: Ascertaining Mathematical Theorems. Electr. Notes Theor. Comput. Sci. 151(1), 21–38 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle’s Logics: HOL (2000)Google Scholar
  15. 15.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  16. 16.
    Sutcliffe, G., Gao, Y., Colton, S.: A Grand Challenge of Theorem Discovery (June 2003)Google Scholar
  17. 17.
    Wehrman, I., Stump, A., Westbrook, E.: Slothrop: KnuthBendix Completion with a Modern Termination Checker. In: Webster University, St. Louis, Missouri M.Sc. Computer Science, Washington University, pp. 268–279 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Omar Montano-Rivas
    • 1
  • Roy McCasland
    • 1
  • Lucas Dixon
    • 1
  • Alan Bundy
    • 1
  1. 1.School of InformaticsUniversity of EdinburghUK

Personalised recommendations