A Comparison of Artificial Intelligence Methods on Determining Coronary Artery Disease

  • İsmail Babaoğlu
  • Ömer Kaan Baykan
  • Nazif Aygül
  • Kurtuluş Özdemir
  • Mehmet Bayrak
Part of the Communications in Computer and Information Science book series (CCIS, volume 114)

Abstract

The aim of this study is to show a comparison of multi-layered perceptron neural network (MLPNN) and support vector machine (SVM) on determination of coronary artery disease existence upon exercise stress testing (EST) data. EST and coronary angiography were performed on 480 patients with acquiring 23 verifying features from each. The robustness of the proposed methods is examined using classification accuracy, k-fold cross-validation method and Cohen’s kappa coefficient. The obtained classification accuracies are approximately 78% and 79% for MLPNN and SVM respectively. Both MLPNN and SVM methods are rather satisfactory than human-based method looking to Cohen’s kappa coefficients. Besides, SVM is slightly better than MLPNN when looking to the diagnostic accuracy, average of sensitivity and specificity, and also Cohen’s kappa coefficient.

Keywords

Exercise stress testing coronary artery disease support vector machine artificial neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gibbons, R., Balady, G., Bricker, J.T., et al.: ACC/AHA Guideline update for exercise testing: summary article. A report of the American college of cardiology/American heart association task force on practice guidelines (Committee to update the 1997 exercise testing guidelines). J. Am. Coll. Cardiol. 40(8), 1531–1540 (2002)CrossRefGoogle Scholar
  2. 2.
    San Roman, J.A., Vilacosta, I., Castillo, J.A., Rollan, M.J., Hernandez, M., Peral, V., Garcimartin, I., del Mar de la Torre, M., Fernandez-Aviles, F.: Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 80(4), 370–376 (1998)CrossRefGoogle Scholar
  3. 3.
    Thom, T., Haase, N., Rosamond, W., Howard, V.J., Rumsfeld, J., Manolio, T., Zheng, Z.J., Flegal, K., O’Donnell, C., Kittner, S., Lloyd-Jones, D., Goff Jr., D.C., Hong, Y., Adams, R., Friday, G., Furie, K., Gorelick, P., Kissela, B., Marler, J., Meigs, J., Roger, V., Sidney, S., Sorlie, P., Steinberger, J., Wasserthiel-Smoller, S., Wilson, M., Wolf, P.: Heart disease and stroke statistics–2006 update: A report from the American heart association statistics committee and Stroke statistics subcommittee. Circulation 113, e85–e151 (2006) CrossRefGoogle Scholar
  4. 4.
    Comak, E., Arslan, A., Turkoglu, I.: A decision support system based on support vector machines for diagnosis of the heart valve diseases. Computers in Biology and Medicine 37, 21–27 (2007)CrossRefGoogle Scholar
  5. 5.
    Ozbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Computers in Biology and Medicine 36(4), 376–388 (2006)CrossRefGoogle Scholar
  6. 6.
    Polat, K., Sahan, S., Gunes, S.: A new method to medical diagnosis: artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia. Expert Systems with Applications 31(2), 264–269 (2006)CrossRefGoogle Scholar
  7. 7.
    Turkoglu, I., Arslan, A., Ilkay, E.: An expert system for diagnosis of the heart valve diseases. Expert Systems with Applications 23(3), 229–236 (2002)CrossRefGoogle Scholar
  8. 8.
    Kannathal, N., Lim, C.M., Rajendra Acharya, U., Sadasivan, P.K.: Cardiac state diagnosis using adaptive neuro-fuzzy technique. Medical Engineering & Physics 28(8), 809–815 (2006)CrossRefGoogle Scholar
  9. 9.
    Ceylan, M., Ceylan, R., Dirgenali, F., Kara, S., Ozbay, Y.: Classification of carotid artery doppler signals in the early phase of atherosclerosis using complex-valued artificial neural network. Computers in Biology and Medicine 37, 28–36 (2007)CrossRefGoogle Scholar
  10. 10.
    Lapuerta, P., Azen, S.P., Labree, L.: Use of neural networks in predicting the risk of coronary artery disease. Computers and Biomedical Research 28(1), 38–52 (1995)CrossRefGoogle Scholar
  11. 11.
    Süt, N., Şenocak, M.: Assessment of the performances of multilayer perceptron neural networks in comparison with recurrent neural networks and two statistical methods for diagnosing coronary artery disease. Expert Systems 24(3), 131–142 (2007)CrossRefGoogle Scholar
  12. 12.
    Scott, J.A., Aziz, K., Yasuda, T., Gewirtz, H.: Integration of clinical and imaging data to predict the presence of coronary artery disease using neural networks. Journal of Nuclear Cardiology 11(4), 26 (2004)CrossRefGoogle Scholar
  13. 13.
    Kurt, I., Ture, M., Kurum, A.T.: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Systems with Applications 34, 366–374 (2008)CrossRefGoogle Scholar
  14. 14.
    Zhidong, Z.: Noninvasive diagnosis of coronary artery disease based on instantaneous frequency of diastolic murmurs and SVM. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 5651–5654 (2005)Google Scholar
  15. 15.
    Cios, K.J., Goodenday, L.S.: Hybrid intelligence system for diagnosing coronary stenosis. Combining fuzzy generalized operators with decision rules generated by machine learning algorithms. IEEE Engineering in Medicine and Biology Magazine 13(5), 723–729 (1994)CrossRefGoogle Scholar
  16. 16.
    Mobley, B.A., Moore, W.E., Schechter, E., Eichner, J.E., McKee, P.A.: Neural network predictions of significant coronary artery stenosis in women. Computational Intelligence Processing in Medical Diagnosis, 261–290 (2002)Google Scholar
  17. 17.
    Mobley, B.A., Moore, W.E., Schechter, E., Eichner, J.E., McKee, P.A.: Neural network predictions of significant coronary artery stenosis in men. Artificial Intelligence in Medicine 34, 151–161 (2005)CrossRefGoogle Scholar
  18. 18.
    Rumelhart, D.E., McClelland, J.L.: PDP Research Group: Paralel distributed processing: exploration in the microstructure of cognition, vol. 1, p. 950. MIT Press, MA (1989)Google Scholar
  19. 19.
    Sagiroglu, S., Colak, I., Bayindir, R.: Power factor correction technique based on artificial neural networks. Energy Conversion and Management 47(18-19), 3204–3215 (2006)CrossRefGoogle Scholar
  20. 20.
    Serhatlioglu, S., Hardalac, F., Guler, I.: Classification of transcranial doppler signals using artificial neural network. Journal of Medical Systems 27, 205–214 (2003)CrossRefGoogle Scholar
  21. 21.
    Pao, Y.H.: Adaptive pattern recognition and neural networks. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  22. 22.
    Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)CrossRefMATHGoogle Scholar
  23. 23.
    Gunn, S.R.: Support vector machines for classification and regression. ISIS, Technical Report, University of Southampton, Department of Electrical and Computer Science (1998)Google Scholar
  24. 24.
    Chen, K.Y., Wang, C.H.: A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan. Expert Systems with Applications 32(1), 254–264 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kulkarni, A., Jayaraman, V.K., Kulkarni, B.D.: Support vector classification with parameter tuning assisted by agent-based technique. Computers and Chemical Engineering 28, 311–318 (2004)CrossRefGoogle Scholar
  26. 26.
    Seo, K.K.: An application of one-class support vector machines in content-based image retrieval. Expert Systems with Applications 33(2), 491–498 (2007)CrossRefGoogle Scholar
  27. 27.
    Takeuchi, K., Collier, N.: Bio-medical entity extraction using support vector machines. Artificial Intelligence in Medicine 33(2), 125–137 (2003)CrossRefGoogle Scholar
  28. 28.
    An, S., Liu, W., Venkatesh, S.: Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognition 40, 2154–2162 (2007)CrossRefMATHGoogle Scholar
  29. 29.
    Shao, J.: Linear model selection by cross-validation. Journal of American Statistical Association 88, 486–494 (1993)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Nielsen, C., Lang, R.S.: Principles of screening. The Medical Clinics of North America 83(6), 1323–1337 (1999)CrossRefGoogle Scholar
  31. 31.
    Agresti, A.: An introduction to categorical data analysis, 2nd edn. Wiley, Chichester (2007)CrossRefMATHGoogle Scholar
  32. 32.
    Sprent, P., Smeeton, N.C.: Applied non-parametric statistical methods, 3rd edn. Chapman & Hall, Boca Raton (1999)MATHGoogle Scholar
  33. 33.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • İsmail Babaoğlu
    • 1
  • Ömer Kaan Baykan
    • 1
  • Nazif Aygül
    • 2
  • Kurtuluş Özdemir
    • 3
  • Mehmet Bayrak
    • 4
  1. 1.Department of Computer EngineeringSelçuk UniversityKonyaTurkey
  2. 2.Department of Cardiology, Selçuklu Faculty of MedicineSelçuk UniversityKonyaTurkey
  3. 3.Department of Cardiology, Meram Faculty of MedicineSelçuk UniversityKonyaTurkey
  4. 4.Department of Electrical and Electronics EngineeringMevlana UniversityKonyaTurkey

Personalised recommendations