A Genetic-Algorithm-Based Fusion System Optimization for 3D Image Interpretation

  • Lionel Valet
  • Beatriz S. L. P. de Lima
  • Alexandre G. Evsukoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


Information fusion systems are complex systems with many parameters that must be adjusted to obtain interesting results. Generally applied in specialized domains such as military, medical and industrial areas, these systems must work in collaboration with the experts of the domains. As these end-users are not specialists in information fusion, the parameters adjustment becomes a difficult task. In addition, to find a good set of those parameters is a hard and time consuming process as the search space is very large. In order to overcome this issue a genetic algorithm is applied to automatically search the best parameter set. The results show that the proposed approach produces accurate levels of the global performance of the fusion system.


Genetic Algorithm Window Size Extraction Step Image Interpretation Information Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kokar, M.M., Tomasik, J.A., Weyman, J.: Formalizing classes of information fusion systems. Information Fusion 5(3), 189–202 (2004)CrossRefGoogle Scholar
  2. 2.
    Jullien, S., Valet, L., Mauris, G., Bolon, P., Teyssier, S.: An attribute fusion system based on the choquet integral to evaluate the quality of composite parts. IEEE Trans. On Instrumentation and Measurement 57(4), 755–762 (2008)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y.: A survey on evaluation methods for image segmentation. Pattern Recognition 29(8), 1335–1346 (1996)CrossRefGoogle Scholar
  4. 4.
    Lamallem, A., Valet, L., Coquin, D.: Local versus global evaluation of a cooperative fusion system for 3d image interpretation. In: International Symposium on Optomechatronic Technologies cdrom (2009)Google Scholar
  5. 5.
    Hammouche, K., Diaf, M., Siarry, P.: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Engineering Applications of Artificial Intelligence (to appear)Google Scholar
  6. 6.
    Talbi, E., Geneste, L., Grabot, B., Previtalia, R., Hostachy, P.: Application of optimization techniques to parameter set-up in scheduling. Computers in Industry 55, 105–124 (2004)CrossRefGoogle Scholar
  7. 7.
    Gabrys, B., Ruta, D.: Genetic algorithms in classifier fusion. Applied Soft Computing 6, 337–347 (2006)CrossRefGoogle Scholar
  8. 8.
    Maslov, I., Gertner, I.: Multi-sensor fusion: an evolutionary algorithm approach. Information Fusion 7, 304–330 (2006)CrossRefGoogle Scholar
  9. 9.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  10. 10.
    Chaibakhsh, A., Ghaari, A., Moosavian, S.A.A.: A simulated model for a once-through boiler by parameter adjustment based on genetic algorithms. Simulation Modelling Practice and Theory 15, 1029–1051 (2007)CrossRefGoogle Scholar
  11. 11.
    Montero, G., Rodrguez, E., Montenegro, R., Escobar, J., Gonzalez-Yuste, J.: Genetic algorithms for an improved parameter estimation with local renement of tetrahedral meshes in a wind model. Advances in Engineering Software 36, 3–10 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nougues, J.M., Grau, M.D., Puigjaner, L.: Parameter estimation with genetic algorithm in control of fed-batch reactors. Chemical Engineering and Processing 41, 303–309 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lionel Valet
    • 1
  • Beatriz S. L. P. de Lima
    • 2
  • Alexandre G. Evsukoff
    • 2
  1. 1.LISTICUniversité de SavoieAnnecy CedexFrance
  2. 2.COPPE/FederalUniversity of RJRio de JaneiroBrazil

Personalised recommendations