Multiple Clues for License Plate Detection and Recognition

  • Pablo Negri
  • Mariano Tepper
  • Daniel Acevedo
  • Julio Jacobo
  • Marta Mejail
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


This paper addresses a license plate detection and recognition (LPR) task on still images of trucks. The main contribution of our LPR system is the fusion of different segmentation algorithms used to improve the license plate detection. We also compare the performance of two kinds of classifiers for optical character recognition (OCR): one based on the a contrario framework using the shape contexts as features and the other based on a SVM classifier using the intensity pixel values as features.


Support Vector Machine Optical Character Recognition License Plate Text Segment Character Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anagnostopoulos, C., et al.: License plate recognition from still images and video sequences: A survey. Inteligent Transportation Systems 9(3), 377–391 (2008)CrossRefGoogle Scholar
  2. 2.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  3. 3.
    Desolneux, A., Moisan, L., Morel, J.: From Gestalt Theory to Image Analysis: A Probabilistic Approach. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Donoser, M., Arth, C., Bischof, H.: Detecting, tracking and recognizing license plates. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 447–456. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Wong, E.K., Chen, M.: A new robust algorithm for video text extraction. Pattern Recognition 36, 1397–1406 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hongliang, B., Changping, L.: A hybrid license plate extraction method based on edge statistics and morphology. In: ICPR, pp. 831–834 (2004)Google Scholar
  7. 7.
    Hsieh, C.T., Juan, Y.S., Hung, K.M.: Multiple license plate detection for complex background. In: AINA, pp. 389–392 (2005)Google Scholar
  8. 8.
    Huaifeng, Z., et al.: Learning-based license plate detection using global and local features. In: ICPR, pp. 1102–1105 (2006)Google Scholar
  9. 9.
    Kim, K.I., Jung, K., Kim, J.: Color Texture-Based Object Detection: An Application to License Plate Localization. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 321–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Mello, C.A.B., Costa, D.C.: A Complete System for Vehicle License Plate Recognition, In: WSSIP, pp. 1–4 (2009)Google Scholar
  11. 11.
    Platt, J.C.: Sequential minimal optimization: A fast algorithm for training support vecthor machines. Tech. Rep. MSR-TR-98-14, Microsoft Research (1998)Google Scholar
  12. 12.
    Rahman, C.A., Badawy, W., Radmanesh, A.: A real time vehicle’s license plate recognition system. In: AVSS, pp. 163–166 (2003)Google Scholar
  13. 13.
    Tepper, M., Acevedo, D., Goussies, N., Jacobo, J., Mejail, M.: A decision step for shape context matching. In: ICIP, pp. 409–412 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pablo Negri
    • 1
  • Mariano Tepper
    • 2
  • Daniel Acevedo
    • 2
  • Julio Jacobo
    • 2
  • Marta Mejail
    • 2
  1. 1.PLADEMAUniversidad del Centro de la Provincia de Buenos AiresTandilArgentina
  2. 2.Departamento de Computación-Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresArgentina

Personalised recommendations