MIST: An Interactive Storytelling System with Variable Character Behavior
Abstract
Despite advances in game technology, most stories constructed by game designers remain inherently linear in nature, and player actions often have limited impact on the central story. In interactive storytelling approaches, an important challenge is the creation of stable yet dynamic environments to allow the emergence of unscripted stories involving both human-controlled characters and autonomous non-player characters (NPCs). In this paper, we present an architectural design for creating open-ended, interactive storytelling systems in which story structure emerges in real time and in response to player actions, thus providing a greater variety of game experiences than more scripted approaches. We present a partial implementation of the approach in a virtual environment populated by multiple NPCs that exhibit stable but interesting autonomous behavior. Finally, we present experimental results that demonstrate the scalability of the approach and variability of NPC behavior that it produces.
Keywords
multiplayer games interactive storytelling virtual worlds autonomous agentsPreview
Unable to display preview. Download preview PDF.
References
- 1.Kline, D.: Bringing Interactive Storytelling to Industry. In: AI Summit, Game Developers Conference (2010), http://aigamedev.com/open/coverage/gdc10-slides-highlights/
- 2.Thue, D., Bulitko, V., Spetch, M.: Player Modeling for Interactive Storytelling: A Practical Approach. In: Rabin, S. (ed.) AI Game Programming Wisdom, vol. 4, pp. 633–646. Charles River Media, Boston (2008)Google Scholar
- 3.Tychsen, A., Hitchens, M.: Ghost Worlds – Time and Consequence in MMORPGs. In: Göbel, S., Malkewitz, R., Iurgel, I. (eds.) TIDSE 2006. LNCS, vol. 4326, pp. 300–311. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 4.Fairclough, C.R., Cunningham, P.: AI Structuralist Storytellin. Computer Games. Technical Report TCD-CS-2004-43. Trinity College Dublin (2004)Google Scholar
- 5.Magerko, B.: Story Representation and Interactive Drama. In: Proceedings of the 1st Artificial Intelligence for Interactive Digital Entertainment Conference, pp. 87–92. AAAI Press, Menlo Park (2005)Google Scholar
- 6.Barber, H., Kudenko, D.: Generation of Dilemma-Based Interactive Narratives with a Changeable Story Goal. In: Proceedings of the 2nd International Conference on Intelligent Technologies for Interactive Entertainment, pp. 1–10. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Brussels (2008)Google Scholar
- 7.Young, R.M., Riedl, M.: Towards an Architecture for Intelligent Control of Narrative in Interactive Virtual Worlds. In: Proceedings of the 8th International Conference on Intelligent User Interfaces, pp. 310–312. ACM, New York (2003)Google Scholar
- 8.Cavazza, M., Charles, F., Mead, S.J.: Character-Based Interactive Storytelling. IEEE Intelligent Systems 17, 17–24 (2002)CrossRefzbMATHGoogle Scholar
- 9.Johnson, D., Wiles, J.: Computer Games with Intelligence. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, pp. 1355–1358. IEEE, Los Alamitos (2001)Google Scholar
- 10.Maslow, A.H.: A Theory of Human Motivation. Psychological Review 50, 370–396 (1943)CrossRefGoogle Scholar
- 11.Lekavý, M., Návrat, P.: Expressivity of STRIPS-Like and HTN-Like Planning. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 121–130. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 12.Nau, D., Cao, Y., Lotem, A., Muñoz-Avila, H.: SHOP: Simple Hierarchical Ordered Planner. In: 16th International Joint Conference on Artificial Intelligence, pp. 968–973. Morgan Kaufmann, San Francisco (1999)Google Scholar