Advertisement

A Data-Driven Case-Based Reasoning Approach to Interactive Storytelling

  • Reid Swanson
  • Andrew S. Gordon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6432)

Abstract

In this paper we describe a data-driven interactive storytelling system similar to previous work by Gordon & Swanson. We addresses some of the problems of their system, by combining information retrieval, machine learning and natural language processing. To evaluate our system, we leverage emerging crowd-sourcing communities to collect orders of magnitude more data and show statistical improvement over their system. The end result is a computer agent capable of contributing to stories that are nearly indistinguishable form entirely human written ones to outside observers.

Keywords

interactive storytelling case-based reasoning natural language processing crowd-sourcing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barzilay, R., Lapata, M.: Modeling local coherence: an entity-based approach. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, Ann Arbor, Michigan, pp. 141–148. Association for Computational Linguistics (2005)Google Scholar
  2. 2.
    Burton, K., Java, A., Soboroff, I.: The ICWSM 2009 spinn3r dataset. In: Proceedings of the Third Annual Conference on Weblogs and Social Media, San Jose, CA (May 2009)Google Scholar
  3. 3.
    Callison-Burch, C.: Fast, cheap, and creative: evaluating translation quality using amazon’s mechanical turk. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Singapore, vol. 1, pp. 286–295. Association for Computational Linguistics (2009)Google Scholar
  4. 4.
    Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: kernels over discrete structures, and the voted perceptron. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Philadelphia, Pennsylvania, pp. 263–270. Association for Computational Linguistics (2001)Google Scholar
  5. 5.
    Courtois, B., Silberztein, M.D.: Dictionnaires lectroniques du fran§ais. Langue Francaise, Larousse (1989)Google Scholar
  6. 6.
    Crowther, W., Woods, D.: Adventure (1977)Google Scholar
  7. 7.
    Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification. In: Proceedings of the 25th international conference on Machine learning, Helsinki, Finland, pp. 264–271. ACM, New York (2008)Google Scholar
  8. 8.
    Gordon, A.S., Ganesan, K.: Automated story capture from conversational speech. In: K-CAP, pp. 145–152 (2005)Google Scholar
  9. 9.
    Hobbs, J.: Pronoun resolution. Research Report 76-1, Department of Computer Sciences, City College, City University of New York (August 1976)Google Scholar
  10. 10.
    Manning, C.D., Raghavan, P., Schze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (July 2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mateas, M., Stern, A.: Towards integrating plot and character for interactive drama. In: Working Notes of the Social Intelligent Agents: The Human in the Loop Symposium, Menlo Park. AAAI Fall Symposium Series, pp. 113–118 (2000)Google Scholar
  12. 12.
    Ounis, I.: Research directions in terrier: a search engine for advanced retrieval on the web (2007), http://eprints.gla.ac.uk/14096/
  13. 13.
    Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning, 1st edn. Lawrence Erlbaum, Mahwah (July 1989)Google Scholar
  14. 14.
    Sagae, K., Lavie, A.: A best-first probabilistic shift-reduce parser. In: Proceedings of the COLING/ACL on Main conference poster sessions, Sydney, Australia, pp. 691–698. Association for Computational Linguistics (2006)Google Scholar
  15. 15.
    Soricut, R., Marcu, D.: Discourse generation using utility-trained coherence models. In: Proceedings of the COLING/ACL on Main conference poster sessions, Sydney, Australia, pp. 803–810. Association for Computational Linguistics (2006)Google Scholar
  16. 16.
    Swanson, R., Gordon, A.S.: Say anything: A massively collaborative open domain story writing companion. In: Interactive Storytelling, pp. 32–40 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Reid Swanson
    • 1
  • Andrew S. Gordon
    • 2
  1. 1.Walt Disney Imagineering Research & DevelopmentGlendaleUSA
  2. 2.The Institute for Creative TechnologiesMarina Del ReyUSA

Personalised recommendations