User-Centered Design of Preference Elicitation Interfaces for Decision Support

  • Alina Pommeranz
  • Pascal Wiggers
  • Catholijn M. Jonker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6389)


A crucial aspect for the success of systems that provide decision or negotiation support is a good model of their user’s preferences. Psychology research has shown that people often do not have well-defined preferences. Instead they construct them during the elicitation process. This implies that the interaction between the system and a user can greatly influence the quality of the preference information and the user’s acceptance of the results provided by the system. In this paper we describe a user-centered approach to design preference elicitation interfaces. First, we extracted a number of criteria for successful design of preferences elicitation interfaces from literature and current systems designs. Second we constructed four new intermediate designs that are compositional with respect to different criteria and, furthermore correspond to different thinking styles of the user. Last, we offer first insights from an initial formative evaluation of our designs.


Preference Elicitation Prototypes User-Centered Design Evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bettman, J.R., Luce, M.F., Payne, J.W.: Constructive consumer choice processes. Journal of Consumer Research 25(3), 187–217 (1998)CrossRefGoogle Scholar
  2. 2.
    Burke, R.: Knowledge-based recommender systems. In: Kent, A. (ed.) Encyclopedia of Library and Information Systems, vol. 69. Marcel Dekker, New York (2000)Google Scholar
  3. 3.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Carenini, G., Loyd, J.: Valuecharts: analyzing linear models expressing preferences and evaluations. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI 2004, pp. 150–157. ACM Press, New York (2004)Google Scholar
  5. 5.
    Carenini, G., Poole, D.: Constructed preferences and value-focused thinking: Implications for ai research on preference elicitation. Tech. rep. (2002)Google Scholar
  6. 6.
    Carroll, J.: Encountering others: Reciprocal openings in participatory design and user-centered design. Human-Computer Interaction 11(3), 285–290 (2009)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Pu, P.: Survey of preference elicitation methods. Tech. rep., Swiss Federal Institute of Technolog. In: Lausanne, EPFL (2004)Google Scholar
  8. 8.
    Curhan, J.R., Neale, M.A., Ross, L.: Dynamic valuation: Preference changes in the context of face-to-face negotiation. Journal of Experimental Social Psychology 40(2), 142–151 (2004)CrossRefGoogle Scholar
  9. 9.
    Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human-Computer Interaction. Prentice-Hall, Englewood Cliffs (2004)zbMATHGoogle Scholar
  10. 10.
    Doyle, J.: Prospects for preferences. Computational Intelligence 20(2) (2004)Google Scholar
  11. 11.
    Faltings, B., Pu, P., Torrens, M., Viappiani, P.: Designing example-critiquing interaction. In: Proceedings of the 9th International Conference on Intelligent User Interfaces, IUI 2004, pp. 22–29. ACM Press, New York (2004)Google Scholar
  12. 12.
    Fano, A., Kurth, S.W.: Personal choice point: helping users visualize what it means to buy a bmw. In: Proceedings of the 8th International Conference on Intelligent User Interfaces, IUI 2003, pp. 46–52. ACM Press, New York (2003)Google Scholar
  13. 13.
    Ferguson, G., Allen, J.: Mixed-initiative systems for collaborative problem solving. AI Magazine 28(2) (2006)Google Scholar
  14. 14.
    Fischer, G.W., Carmon, Z., Ariely, D., Zauberman, G.: Goal-based construction of preferences: Task goals and the prominence effect. Management Science 45(8), 1057–1075 (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Fisher, R., Ury, W.L., Patton, B.: Getting to Yes: Negotiating Agreement Without Giving In. Penguin, Non-Classics (1983)Google Scholar
  16. 16.
    Gregorc, A.: The Mind Styles Model: Theory, Principles, and Practice. AFG (2006)Google Scholar
  17. 17.
    Holtzblatt, K., Jones, S.: Participatory design: Principles and practices. In: Associates, C./.L.E. (ed.) Contextual Inquiry: A Participatory Technique for System Design, pp. 177–210 (1993)Google Scholar
  18. 18.
    Johnson, E., Steffel, M., Goldstein, D.: Making better decisions: from measuring to constructing preferences. Health Psychology 24(8), 17–22 (2005)CrossRefGoogle Scholar
  19. 19.
    Keeney, R.: Value-Focused Thinking: A Path to Creative Decision Making. Harvard University Press, Cambridge (1992)Google Scholar
  20. 20.
    Muller, M.J.: Pictive - an exploration in participatory design. In: CHI 1991, pp. 225–231. ACM Press, New York (1991)Google Scholar
  21. 21.
    Muller, M.J., Wildman, D.M., White, E.A.: Taxonomy of pd practices: A brief practitioner’s guide. Communications of the ACM 36(4), 24–28 (1993)CrossRefGoogle Scholar
  22. 22.
    Osman, A., Baharin, H., Ismail, M., Jusoff, K.: Paper prototyping as a rapid participatory design technique. Computer and Information Science 2(3) (2009)Google Scholar
  23. 23.
    Payne, J.W., Bettman, J.R., Schkade, D.A.: Measuring constructed preferences: Towards a building code. Journal of Risk and Uncertainty 19(1-3), 243–270 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    Payne, J., Bettman, J., Johnson, E.: The Adaptive Decision Maker. Cambridge University Press, Cambridge (1999)Google Scholar
  25. 25.
    Peintner, B., Paolo Viappiani, N.S.: Preferences in interactive systems: Technical challenges and case studies. AI Magazine 29(4) (2008)Google Scholar
  26. 26.
    Pu, P., Chen, L.: Trust-inspiring explanation interfaces for recommender systems. Knowledge-Based Systems 20(6), 542–556 (2007)CrossRefGoogle Scholar
  27. 27.
    Pu, P., Faltings, B., Torrens, M.: User-involved preference elicitation. In: Workshop Notes of the Workshop on Configuration, the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 56–63 (August 2003)Google Scholar
  28. 28.
    Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: learning new user preferences in recommender systems. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, IUI 2002, pp. 127–134. ACM Press, New York (2002)Google Scholar
  29. 29.
    Shearin, S., Lieberman, H.: Intelligent profiling by example. In: Proceedings of the 6th international Conference on Intelligent User Interfaces, IUI 2001, pp. 145–151. ACM Press, New York (2001)Google Scholar
  30. 30.
    Shiell, A., Hawe, P., Seymor, J.: Values and preferences are not necessarily the same. Health Economics 6(5), 515–518 (1997)CrossRefGoogle Scholar
  31. 31.
    Shiv, B., Fedorikhin, A.: Heart and mind in conflict: the interplay of affect and cognition in consumer decision making. Journal of Consumer Research 26(3), 278–292 (1999)CrossRefGoogle Scholar
  32. 32.
    Simon, D., Krawczyk, D.C., Holyoak, K.J.: Construction of preferences by constraint satisfaction. Psychological Science 15(5), 331–336 (2004)CrossRefGoogle Scholar
  33. 33.
    Sinha, R., Swearingen, K.: The role of transparency in recommender systems. In: Extended Abstracts on Human Factors in Computing Systems, CHI 2002, pp. 830–831. ACM Press, New York (2002)Google Scholar
  34. 34.
    Stolze, M., Ströbel, M.: Dealing with learning in ecommerce product navigation and decision support: the teaching salesman problem. In: Proceedings of the Second Interdisciplinary World Congress on Mass Customization and Personalization (2003)Google Scholar
  35. 35.
    Valli, A.: The design of natural interaction. Multimedia Tools Appl. 38(3), 295–305 (2008)CrossRefGoogle Scholar
  36. 36.
    Weber, E.U., Johnson, E.J.: Constructing Preferences from Memory. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alina Pommeranz
    • 1
  • Pascal Wiggers
    • 1
  • Catholijn M. Jonker
    • 1
  1. 1.Section Man-Machine InteractionDelft University of TechnologyDelftThe Netherlands

Personalised recommendations