An Advanced Algorithm for Illumination-Based Synchronization of High-Speed Vision Sensors in Dynamic Scenes

  • Lei Hou
  • Shingo Kagami
  • Koichi Hashimoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6425)


To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. In this paper, an advanced illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm is proposed and evaluated. To remove the dependency of system behavior on the amplitude of the illumination, which can be affected by moving objects or the positional relation of the illumination and objects, the feedback amount of the PLL system is normalized per frame by the estimated amplitude of the reference signal to generate stable synchronization even in highly dynamic scenes. Both simulated results and real world experiments demonstrated successful synchronization that a 1,000-Hz frame rate vision sensor was successfully synchronized to both direct and indirect illumination with only 28-μs peak-to-peak jitters.


Robot Vision Vision Chip Camera Synchronization Phase-locked Loop Visible Light Communication Visual Servo Intensity Modulation Signal Normalization Quadrature Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujiyoshi, H., Shimizu, S., Nishi, T.: Fast 3d position measurement with two unsynchronized cameras. In: Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan, pp. 1239–1244 (July 2003)Google Scholar
  2. 2.
    Point Grey Research Inc.: Dragonfly Camera Synchronization, (as of 2009/02/16)
  3. 3.
    Rai, P.K., Tiwari, K., Guha, P., Mukerjee, A.: A cost-effective multiple camera vision system using firewire cameras and software synchronization. In: The 10th International Conference on High Performance Computing, Hyderabad, India (December 2003)Google Scholar
  4. 4.
    Litos, G., Zabulis, X., Triantafyllidis, G.: Synchronous image acquisition based on network synchronization. In: CVPRW 2006: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, pp. 167–167. IEEE Computer Society, Los Alamitos (June 2006)CrossRefGoogle Scholar
  5. 5.
    Sivrikaya, F., Yener, B.: Time synchronization in sensor networks: a survey. IEEE Netw. 18, 45–55 (2004)CrossRefGoogle Scholar
  6. 6.
    Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using reference broadcasts. In: Proceedings of the 5th symposium on Operating systems design and implementation, Number SI, pp. 147–163. ACM, New York (2002)CrossRefGoogle Scholar
  7. 7.
    Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor networks. In: SenSys 2003: Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 138–149. ACM, New York (2003)Google Scholar
  8. 8.
    Maróti, M., Kusy, B., Simon, G., Lédeczi, A.: The flooding time synchronization protocol. In: SenSys 2004: Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 39–49. ACM, New York (2004)Google Scholar
  9. 9.
    Hou, L., Kagami, S., Hashimoto, K.: Illumination-based real-time contactless synchronization of high-speed vision sensors. In: ROBIO 2009: Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, Washington, DC, USA, pp. 1750–1755. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  10. 10.
    Best, R.E.: Phase-locked loops: design, simulation, and applications. McGraw-Hill Professional, New York (2007)Google Scholar
  11. 11.
    Gardner, F.M.: Phaselock Techniques, 3rd edn. Wiley-Interscience, Hoboken (2005)CrossRefGoogle Scholar
  12. 12.
    Hou, L., Kagami, S., Hashimoto, K.: Performance evaluation of illumination-based synchronization of high-speed vision sensors in dynamic scenes. In: International Conference on Advanced Mechatronics 2010, Osaka, Japan (2010) (to appear)Google Scholar
  13. 13.
    Ando, S., Kimachi, A.: Correlation image sensor: Two-dimensional matched detection of amplitude-modulated light. IEEE Trans. Electron Devices 50(10), 2059–2066 (2003)CrossRefGoogle Scholar
  14. 14.
    Ohta, J., Yamamoto, K., Hirai, T., Kagawa, K., Nunoshita, M., Yamada, M., Yamasaki, Y., Sugishita, S., Watanabe, K.: An image sensor with an in-pixel demodulation function for detecting the intensity of a modulated light signal. IEEE Trans. Electron Devices 50(1), 166–172 (2003)CrossRefGoogle Scholar
  15. 15.
    Hou, L., Kagami, S., Hashimoto, K.: Illumination-based synchronization of high-speed vision sensors. Sensors 10, 5530–5547 (2010)CrossRefGoogle Scholar
  16. 16.
    Kagami, S., Komuro, T., Ishikawa, M.: A high-speed vision system with in-pixel programmable adcs and pes for real-time visual sensing. In: 8th IEEE International Workshop on Advanced Motion Control, Kawasaki, Japan, pp. 439–443 (March 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lei Hou
    • 1
  • Shingo Kagami
    • 1
  • Koichi Hashimoto
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations