Adaptive Control of Sensor Networks

  • Sven Tomforde
  • Ioannis Zgeras
  • Jörg Hähner
  • Christian Müller-Schloer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6407)


In recent years many algorithms and protocols for applications in wireless sensor networks (WSN) have been introduced. These include, e.g, solutions for routing and event notifications. Common among them is the need to adjust the basic operation to particular operating conditions by means of changing algorithmic parameters. In most applications, parameters have to be set carefully before nodes are deployed to a particular environment. But what happens to the system performance, if the operating conditions change to unforeseen situations at runtime?

In this paper, we present the Organic Network Control (ONC) system and its application to WSNs. ONC is a system for adapting network protocols in response to environmental changes at runtime. Being generic in nature, ONC regards existing protocols as black box systems with an interface to changeable protocol parameters. ONC detects environmental changes locally at each node and applies changes to the protocol parameters by means of lightweight machine learning techniques. More complex exploration of possible parameters is transferred to powerful nodes, such as sink nodes. As an example we show how ONC can be applied to an exemplary WSN protocol for event detection and how performance in the ONC controlled system increases over fixed settings of the protocol.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tomforde, S., Cakar, E., Hähner, J.: Dynamic Control of Network Protocols - A new vision for future self-organised networks. In: Proc. of the 6th Int. Conf. on Informatics in Control, Automation, and Robotics (ICINCO 2009), pp. 285–290 (2009)Google Scholar
  2. 2.
    Tomforde, S., Hurling, B., Hähner, J.: Dynamic control of mobile ad-hoc networks - network protocol parameter adaptation using organic network control. In: Proceedings of the 7th International Conference on Informatics in Control, Automation, and Robotics (ICINCO 2010), vol. 1, INSTICC ,pp. 28–35 (2010)Google Scholar
  3. 3.
    Tomforde, S., Steffen, M., Hähner, J., Müller-Schloer, C.: Towards an Organic Network Control System. In: González Nieto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp. 2–16. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)CrossRefGoogle Scholar
  5. 5.
    Lim, H.B., Lam, V.T., Foo, M.C., Zeng, Y.: An adaptive distributed resource allocation scheme for sensor networks. In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds.) MSN 2006. LNCS, vol. 4325, pp. 770–781. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Whiteson, S., Stone, P.: Towards autonomic computing: adaptive network routing and scheduling. In: Proc. of the Int. Conf. on Autonomic Computing (ICAC 2004), pp. 286–287 (2004)Google Scholar
  7. 7.
    Schöler, T., Müller-Schloer, C.: Design, implementation and validation of a generic and reconfigurable protocol stack framework for mobile terminals. In: Proc. of the 24th Int. Conf. on Distributed Computing Systems Workshops, pp. 362–367 (2004)Google Scholar
  8. 8.
    Rosa, L., Rodrigues, L., Lopes, A.: Appia to R-Appia: Refactoring a Protocol Composition Framework for Dynamic Reconfiguration. Technical report, Department of Informatics, University of Lisbon (2007)Google Scholar
  9. 9.
    Ye, T., Harrison, D., Mo, B., Sikdar, B., Kaur, H.T., Kalyanaraman, S., Szymanski, B., Vastola, K.: Network Management and Control Using Collaborative On-line Simulation. In: Proceedings of IEEE ICC, 06 2001, IEEE, Helsinki (2001)Google Scholar
  10. 10.
    Georganopoulos, N., Lewis, T.: A framework for dynamic link and network layer protocol optimisation. Mobile and Wireless Communications Summit, 2007. 16th IST, 1–5 (2007)Google Scholar
  11. 11.
    Carballido, J.A., Ponzoni, I., Brignole, N.B.: Cgd-ga: A graph-based genetic algorithm for sensor network design. Inf. Sci. 177(22), 5091–5102 (2007)CrossRefGoogle Scholar
  12. 12.
    Marks, M., Niewiadomska-Szynkiewicz, E.: Two-phase stochastic optimization to sensor network localization. In: Proceedings of the International Conference on Sensor Technologies and Applications (SensorComm 2007), Octber 2007, pp. 134–139 (2007)Google Scholar
  13. 13.
    Kulkarni, R.V., Venayagamoorthy, G.K.: Neural network based secure media access control protocol for wireless sensor networks. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2009), pp. 1680–1687 (June 2009)Google Scholar
  14. 14.
    Foerster, A.: Machine Learning Techniques Applied to Wireless Ad-Hoc Networks: Guide and Survey. In: Proc. of the 3rd Int. Conf. on Intelligent Sensors, Sensor Networks and Information (ISSNIP 2007), pp. 365–370 (2007)Google Scholar
  15. 15.
    Boyan, J.A., Littman, M.L.: Packet routing in dynamically changing networks: A reinforcement learning approach. In: Advances in Neural Information Processing Systems, vol. 6, pp. 671–678. Morgan Kaufmann, San Francisco (1994)Google Scholar
  16. 16.
    Rossi, M., Zorzi, M., Rao, R.R.: Statistically assisted routing algorithms (sara) for hop count based forwarding in wireless sensor networks. Wirel. Netw. 14(1), 55–70 (2008)CrossRefGoogle Scholar
  17. 17.
    Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic observer/controller architecture for Organic Computing. In: Tagungsband der GI Jahrestagung, pp. 112–119 (2006)Google Scholar
  18. 18.
    Raghavendra, C.S., Znati, T., Sivalingam, K.M.: Wireless Sensor Networks, 2nd edn. ERCOFTAC Series. Springer, Netherlands (2004)CrossRefMATHGoogle Scholar
  19. 19.
    North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations of the repast agent modeling toolkit. ACM Trans. Model. Comput. Simul. 16(1), 1–25 (2006)CrossRefGoogle Scholar
  20. 20.
    Schmeck, H., Müller-Schloer, C.: A characterization of key properties of environment-mediated multiagent systems. In: Weyns, D., Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049, pp. 17–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sven Tomforde
    • 1
  • Ioannis Zgeras
    • 1
  • Jörg Hähner
    • 1
  • Christian Müller-Schloer
    • 1
  1. 1.Institute of Systems EngineeringLeibniz Universität HannoverHannoverGermany

Personalised recommendations