Designing Self-healing in Automotive Systems

  • Hella Seebach
  • Florian Nafz
  • Jörg Holtmann
  • Jan Meyer
  • Matthias Tichy
  • Wolfgang Reif
  • Wilhelm Schäfer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6407)

Abstract

Self-healing promises to improve the dependability of systems. In particular safety-critical systems like automotive systems are well suited application, since safe operation is required in these systems even in case of failures. Prerequisite for the improved dependability is the correct realization of the self-healing techniques. Consequently, self-healing activities should be rigorously specified and appropriately integrated with the rest of the system. In this paper, we present an approach for designing self-healing mechanisms in automotive systems. The approach contains a construction model which consist of a structural description as well as an extensive set of constraints. The constraints specify a correct system structure and are also used in the self-healing activities. We exemplify the self-healing approach using the adaptive cruise control system of modern cars.

Keywords

Organic Computing Automotive Systems Self-Organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Autosar specification (2009), www.autosar.org
  2. 2.
    Amor-Segan, M., McMurran, R., Dhadyalla, G., Jones, R.: Towards the Self Healing Vehicle. In: Automotive Electronics, 2007 3rd Institution of Engineering and Technology Conference on, pp. 1–7 (2007)Google Scholar
  3. 3.
    Anthony, R., Leonhardi, A., Ekelin, C., Chen, D., Trngren, M., de Boer, G., Jahnich, I., Burton, S., Redell, O., Weber, A., Vollmer, V.: A future dynamically reconfigurable automotive software system. In: Proceedings of the IESS (2007)Google Scholar
  4. 4.
    Anthony, R., Rettberg, A., Chen, D., Jahnich, I., de Boer, G., Enkelin, C.: Towards a dynamically reconfigurable automotive control system architecture. International Federation for Information Processing (IFIP) 231, 71–84 (2007)Google Scholar
  5. 5.
    Badros, G.J., Borning, A., Stuckey, P.J.: The cassowary linear arithmetic constraint solving algorithm. ACM Trans. Comput.-Hum. Interact. 8(4), 267–306 (2001)CrossRefGoogle Scholar
  6. 6.
    Becker, B., Giese, H., Neumann, S., Schenck, M., Treffer, A.: Model-based extension of autosar for architectural online reconfiguration. In: Proceedings of the ACES-MB 2009, CEUR Workshop Proceedings, CEUR-WS.org, pp. 123–137 (2009)Google Scholar
  7. 7.
    Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language into first-order predicate logic. In: Proceedings, VERIFY, Workshop at Federated Logic Conferences (FLoC), pp. 113–123 (2002)Google Scholar
  8. 8.
    Brière, D., Favre, C., Traverse, P.: A family of fault-tolerant systems: electrical flight controls, from airbus a320/330/340 to future military transport aircraft. Microprocessors and Microsystems 19(2), 75 (1995)CrossRefGoogle Scholar
  9. 9.
    Broy, M.: Challenges in automotive software engineering. In: International Conference on Software Engineering, ICSE (2006)Google Scholar
  10. 10.
    Grimm, K.: Software technology in an automotive company: major challenges. In: ICSE 2003: Proceedings of the 25th International Conference on Software Engineering, pp. 498–503. IEEE Computer Society, Washington (2003)CrossRefGoogle Scholar
  11. 11.
    Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification and construction paradigm for organic computing systems. In: Brueckner, S.A., Robertson, P., Bellur, U. (eds.) SASO, pp. 233–242. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  12. 12.
    Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge (2006)Google Scholar
  13. 13.
    Klöpper, B., Meyer, J., Tichy, M., Honiden, S.: Planning with utilities and state trajectories constraints for self-healing in automotive systems. In: Proc. of the Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Budapest, Hungary. LNCS, Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.P., Reif, W.: A universal self-organization mechanism for role-based organic computing systems. In: González Nieto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp. 17–31. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Satzger, B., Pietzowski, A., Trumler, W., Ungerer, T.: Using automated planning for trusted self-organising organic computing systems. In: Rong, C., Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 60–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Seebach, H., Nafz, F., Steghöfer, J.P., Reif, W.: software engineering guideline for self-organizing resource-flow systems. In: Proceedings of the Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems (2010)Google Scholar
  17. 17.
    Seebach, H., Ortmeier, F., Reif, W.: Design and Construction of Organic Computing Systems. In: Proceedings of the IEEE Congress on Evolutionary Computation 2007. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  18. 18.
    Streichert, T., Haubelt, C., Koch, D., Teich, J.: Concepts for Self-Adaptive and Self-Healing Networked Embedded Systems. In: Organic Computing. Springer, Heidelberg (2008)Google Scholar
  19. 19.
    Torlak, E., Jackson, D.: Kodkod: A relational model finder. pp. 632–647 (2007), http://dx.doi.org/10.1007/978-3-540-71209-1_49
  20. 20.
    Trumler, W., Helbig, M., Pietzowski, A., Satzger, B., Ungerer, T.: Self-configuration and self-healing in autosar. In: APAC-14 (2007)Google Scholar
  21. 21.
    Weiss, G., Zeller, M., Eilers, D., Knorr, R.: Towards Self-organization in Automotive Embedded Systems. In: González Nieto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp. 32–46. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Winner, H., Hakuli, S., Wolf, G.: Handbuch Fahrerassistenzsysteme- Kapitel Adaptive Cruise Control. Vieweg Verlag (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hella Seebach
    • 1
  • Florian Nafz
    • 1
  • Jörg Holtmann
    • 2
  • Jan Meyer
    • 2
  • Matthias Tichy
    • 2
  • Wolfgang Reif
    • 1
  • Wilhelm Schäfer
    • 2
  1. 1.Department of Software Engineering and Programming LanguagesUniversity of AugsburgAugsburgGermany
  2. 2.Software Engineering GroupUniversity of PaderbornPaderbornGermany

Personalised recommendations