Advertisement

Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction

  • Fides Aarts
  • Bengt Jonsson
  • Johan Uijen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6435)

Abstract

In order to facilitate model-based verification and validation, effort is underway to develop techniques for generating models of communication system components from observations of their external behavior. Most previous such work has employed regular inference techniques which generate modest-size finite-state models. They typically suppress parameters of messages, although these have a significant impact on control flow in many communication protocols. We present a framework, which adapts regular inference to include data parameters in messages and states for generating components with large or infinite message alphabets. A main idea is to adapt the framework of predicate abstraction, successfully used in formal verification. Since we are in a black-box setting, the abstraction must be supplied externally, using information about how the component manages data parameters. We have implemented our techniques by connecting the LearnLib tool for regular inference with the protocol simulator ns-2, and generated a model of the SIP component as implemented in ns-2.

Keywords

Model Check Communication Protocol Session Initiation Protocol Input String Input Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P. (ed.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Proc. 29th ACM Symp. on Principles of Programming Languages, pp. 4–16 (2002)Google Scholar
  3. 3.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ball, T., Rajamani, S.: The SLAM project: Debugging system software via static analysis. In: Proc. 29th ACM POPL, pp. 1–3 (2002)Google Scholar
  5. 5.
    Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with parameters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  8. 8.
    Brun, Y., Ernst, M.: Finding latent code errors via machine learning over program executions. In: ICSE 2004, pp. 480–490 (May 2004)Google Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. Journal of the ACM 50(5), 752–794 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Cobleigh, J., Giannakopoulou, D., Pasareanu, C.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)zbMATHCrossRefGoogle Scholar
  12. 12.
    Grinchtein, O.: Learning of Timed Systems. PhD thesis, Dept. of IT, Uppsala University, Sweden (2008)Google Scholar
  13. 13.
    Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 379–396. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Grinchtein, O., Jonsson, B., Leucker, M.: Inference of timed transition systems. Electr. Notes Theor. Comput. Sci. 138(3), 87–99 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Groz, R., Li, K., Petrenko, A., Shahbaz, M.: Modular system verification by inference, testing and reachability analysis. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 216–233. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.29th ACM Symp. on Principles of Programming Languages, pp. 58–70 (2002)Google Scholar
  20. 20.
    Huima, A.: Implementing conformiq qtronic. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)Google Scholar
  23. 23.
    Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based on learning parameterized I/O models. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Loiseaux, C., Graf, S., Sifakis, J., Boujjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. Formal Methods in System Design 6(1), 11–44 (1995)zbMATHCrossRefGoogle Scholar
  25. 25.
    Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models. In: Proc. ICS 2008, pp. 501–510 (2008)Google Scholar
  26. 26.
    Mariani, L., Pezzé, M.: Dynamic detection of COTS components incompatibility. IEEE Software 24(5), 76–85 (2007)CrossRefGoogle Scholar
  27. 27.
    Niese, O.: An integrated approach to testing complex systems. Technical report, Dortmund University, Doctoral thesis (2003)Google Scholar
  28. 28.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE/PSTV 1999, Beijing, China, pp. 225–240. Kluwer, Dordrecht (1999)Google Scholar
  29. 29.
    Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE Trans. on Software Engineering 30(1), 29–42 (2004)CrossRefGoogle Scholar
  30. 30.
    Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and experimentation. In: FMICS 2005, New York, NY, USA, pp. 62–71 (2005)Google Scholar
  31. 31.
    Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. Information and Computation 103, 299–347 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Shahbaz, M., Li, K., Groz, R.: Learning and integration of parameterized components through testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Shu, G., Lee, D.: Testing security properties of protocol implementations - a machine learning based approach. In: Proc. ICDCS 2007. IEEE, Los Alamitos (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2010

Authors and Affiliations

  • Fides Aarts
    • 1
  • Bengt Jonsson
    • 2
  • Johan Uijen
    • 1
  1. 1.Inst. f. Comp. and Inf. SciencesRadboud UniversityNijmegenThe Netherlands
  2. 2.Department of Computer SystemsUppsala UniversitySweden

Personalised recommendations