Analysing Message Sequence Graph Specifications

  • Joy Chakraborty
  • Deepak D’Souza
  • K. Narayan Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6415)


We give a detailed construction of a finite-state transition system for a com-connected Message Sequence Graph. Though this result is well-known in the literature and forms the basis for the solution to several analysis and verification problems concerning MSG specifications, the constructions given in the literature are either not amenable to implementation, or imprecise, or simply incorrect. In contrast we give a detailed construction along with a proof of its correctness. Our transition system is amenable to implementation, and can also be used for a bounded analysis of general (not necessarily com-connected) MSG specifications.


Transition System Transitive Closure Communication Graph Trace Model Detailed Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE Trans. Software Eng. 29(7), 623–633 (2003)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Chakraborty, J., D’Souza, D., Narayan Kumar, K.: Analysing Message Sequence Graph Specifications, Technical Report IISc-CSA-TR-2009-1, CSA Department, IISc (2009),
  4. 4.
    Clerbout, M., Latteux, M.: Semi-commutations. Inf. Comput. 73(1), 59–74 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Genest, B., Muscholl, A., Peled, D.: Message sequence charts. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 537–558. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M.A., Thiagarajan, P.S.: A theory of regular msc languages. Inf. Comput. 202(1), 1–38 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Muccini, H.: Detecting implied scenarios analyzing non-local branching choices. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 372–386. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Muscholl, A., Peled, D.: Message sequence graphs and decision problems on mazurkiewicz traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Muscholl, A., Petersen, H.: A note on the commutative closure of star-free languages. Inf. Process. Lett. 57(2), 71–74 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Uchitel, S.: LTSA-MSC tool (2001),
  11. 11.
    Uchitel, S.: Incremental Elaboration of Scenario Based Specifications and Behavior Models Using Implied Scenarios. PhD thesis, Imperial College (2003)Google Scholar
  12. 12.
    Uchitel, S., Chatley, R., Kramer, J., Magee, J.: LTSA-MSC: Tool support for behaviour model elaboration using implied scenarios. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 597–601. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence chart specifications. In: ESEC / SIGSOFT FSE, pp. 74–82 (2001)Google Scholar
  14. 14.
    Uchitel, S., Kramer, J., Magee, J.: Incremental Elaboration of Scenario-Based Specifications and Behavior Models Using Implied Scenarios. ACM Transactions on Software Engineering and Methodology 13(1), 37–85 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joy Chakraborty
    • 1
  • Deepak D’Souza
    • 2
  • K. Narayan Kumar
    • 3
  1. 1.Motorola India Private LimitedIndia
  2. 2.Computer Science and AutomationIndian Institute of ScienceIndia
  3. 3.Chennai Mathematical InstituteH1 SIPCOT IT ParkSiruseriIndia

Personalised recommendations