Semantically-Guided Workflow Construction in Taverna: The SADI and BioMoby Plug-Ins

  • David Withers
  • Edward Kawas
  • Luke McCarthy
  • Benjamin Vandervalk
  • Mark Wilkinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6415)

Abstract

In the Taverna workflow design and enactment tool, users often find it difficult to both manually discover a service or workflow fragment that executes a desired operation on a piece of data (both semantically and syntactically), and correctly connect that service into the workflow such that appropriate connections are made between input and output data elements. The BioMoby project, and its successor the SADI project, embed semantics into their data-structures in an attempt to make the purpose and functionality of a Web Service more computable, and thereby facilitate service discovery during workflow construction. In this article, we compare and contrast the functionality of the BioMoby and SADI plug-ins to Taverna, with a particular focus on how they attempt to simplify workflow synthesis by end-users. We then compare these functionalities with other workflow-like clients we (and others) have created for the BioMoby and SADI systems, discuss the limitations to manual workflow synthesis, and contrast these with the opportunities we have found for fully automated workflow synthesis using the semantics of SADI.

Keywords

Semantic Web Web Services SADI BioMoby Taverna workflow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goderis, A., Li, P., Goble, C.: Workflow Discovery: Requirements from E-science and a Graph-based Solution. International Journal of Web Services Research 5(4) (2008)Google Scholar
  2. 2.
    Goble, C., DeRoure, D.C.: myExperiment: social networking for workflow-using e-scientists. In: Proceedings of the 2nd Workshop on Workflows in Support of Large-Scale Science, pp. 1–2 (2007)Google Scholar
  3. 3.
    Wroe, C., Goble, C., Goderis, A., Lord, P., Miles, S., Papay, J., Alper, P., Moreau, L.: Recycling workflows and services through discovery and reuse. Concurrency Computat: Pract. Exper. 19(2), 1–7 (2006)Google Scholar
  4. 4.
    Gordon, P.M.K., Sensen, C.: A Pilot Study into the Usability of a Scientific Workflow Construction Tool. Technical Report #2007-874-26. Department of Computer Science, The University of Calgary (2007)Google Scholar
  5. 5.
    Goderis, A., Sattler, U., Lord, P., Goble, C.: Seven Bottlenecks to Workflow Reuse and Repurposing. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 323–337. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Gordon, P.M.K., Barker, K., Sensen, C.W.: Helping Molecular Biologists Effectively Build Workflows, Without Programming. In: Lambrix, P., Kemp, G. (eds.) Proceedings of 7th International Conference on Data Integration in the Life Sciences (DILS 2010), Gothenburg, Sweden, August 25-27, pp . 74–89 (2010)Google Scholar
  7. 7.
    Oinn, T., Greenwood, M., Addis, M., Alpdemir, N., Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M., Senger, M., Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment for the life sciences. Concurrency Computat: Pract. Exper. 18(10), 1067–1100 (2006)CrossRefGoogle Scholar
  8. 8.
    Reichm, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Miserov, J.P.: GenePattern 2.0. Nat. Genet. 38(5), 500–501 (2006)CrossRefGoogle Scholar
  9. 9.
    Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., Paton, N.W., Goble, C.A., Brass, A.: Tambis: transparent access to multiple bioinformatics information sources. Bioinformatics 16(2), 184–185 (2000)CrossRefGoogle Scholar
  10. 10.
    Lord, P., Bechhofer, S., Wilkinson, M.D., Schiltz, G., Gessler, D., Hull, D., Goble, C., Stein, L.: Applying semantic web services to Bioinformatics: Experiences gained, lessons learnt. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 350–364. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    The BioMoby Consortium. Interoperability with Moby 1.0 - It’s better than sharing your toothbrush! Briefings in Bioinformatics 9(3), 220–231 (2008)Google Scholar
  12. 12.
    Wilkinson, M.D. Vandervalk, B. McCarthy, L.: SADI Semantic Web Services - cause you can’t always GET what you want! In: IEEE Asia-Pacific Services Computing Conference, APSCC 2009, pp. 13–18 (2009) Google Scholar
  13. 13.
    Kawas, E., Senger, M., Wilkinson, M.D.: BioMoby extensions to the Taverna workflow management and enactment software. BMC Bioinformatics 7(523) (2006)Google Scholar
  14. 14.
    Pignotti, E., Edwards, P., Preece, A., Gotts, N., Polhill, G.: Enhancing Workflow with a Semantic Description of Scientific Intent. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 644–658. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Taylor, J., Schenck, I., Blankenberg, D., Nekrutenko, A.: Using galaxy to perform large-scale interactive data analyses. Curr. Protoc. Bioinformatics, ch. 10:Unit 10.5 (September 2007)Google Scholar
  16. 16.
  17. 17.
    http://www.w3.org/2002/ws/sawsdl/ (Downloaded May 15, 2010)
  18. 18.
    Wolstencroft, K., Alper, P., Hull, D., Wroe, C., Lord, P.W., Stevens, R.D., Goble, C.A.: The myGrid ontology: bioinformatics service discovery. International Journal of Bioinformatics Research and Applications 3(3), 303–325 (2007)CrossRefGoogle Scholar
  19. 19.
    Lord, P., Alper, P., Wroe, C., Goble, C.: Feta: A light-weight architecture for user oriented semantic service discovery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 17–31. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Gordon, P.M.K., Sensen, C.: Seahawk: moving beyond HTML in Web-based bioinformatics analysis. BMC Bioinformatics 8(208) (2007)Google Scholar
  21. 21.
    Martín-Requena, V., Ríos, J., García, M., Ramírez, S., Trelles, O.: jORCA: easily integrating bioinformatics Web Services. Bioinformatics 26(4), 553–559 (2010)CrossRefGoogle Scholar
  22. 22.
    Carrere, S., Gouzy, J.: REMORA: a pilot in the ocean of BioMoby web-services. Bioinformatics 22(7), 900–901 (2006)CrossRefGoogle Scholar
  23. 23.
    Wilkinson, M.: Gbrowse Moby: A Web-based browser for BioMOBY Services. Source Code for Biology and Medicine 1(4) (2006)Google Scholar
  24. 24.
    Navas, I., Rojano, M., Ramirez, S., Pérez, A.J., Aldana, J.F., Trelles, O.: Intelligent client for integrating bioinformatics services. Bioinformatics 22, 106–111 (2006)CrossRefGoogle Scholar
  25. 25.
    Néron, B., Ménager, H., Maufrais, C., Joly, N., Maupetit, J., Letort, S., Carrere, S., Tuffery, P., Letondal, C.: Mobyle: a new full web bioinformatics framework. Bioinformatics 25(22), 3005–3011 (2006)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Song, Y.C., Kawas, E., Good, B.M., Wilkinson, M.D., Tebbutt, S.: DataBiNS: a BioMoby-based data-mining workflow for biological pathways and non-synonymous SNPs. Bioinformatics 23(6), 780–782 (2007)CrossRefGoogle Scholar
  28. 28.
    Ríos, J., Karlsson, J., Trelles, O.: Magallanes: a web services discovery and automatic workflow composition tool. BMC Bioinformatics 10(334) (2009)Google Scholar
  29. 29.
    Vandervalk, B.P., McCarthy, E.L., Wilkinson, M.D.: SHARE: A Semantic Web Query Engine for Bioinformatics. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 367–369. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Withers
    • 1
  • Edward Kawas
    • 1
  • Luke McCarthy
    • 1
  • Benjamin Vandervalk
    • 1
  • Mark Wilkinson
    • 1
  1. 1.Heart + Lung Institute at St. Paul’s HospitalUniversity of British ColumbiaVancouverCanada

Personalised recommendations