Advertisement

Workflows for Metabolic Flux Analysis: Data Integration and Human Interaction

  • Tolga Dalman
  • Peter Droste
  • Michael Weitzel
  • Wolfgang Wiechert
  • Katharina Nöh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6415)

Abstract

Software frameworks implementing scientific workflow applications have become ubiquitous in many research fields. The most beneficial advantages of workflow-enabled applications involve automation of routine operations and distributed computing on heterogeneous systems. Particular challenges in scientific applications include grid-scale orchestration of complex tasks with interactive workflows and data management allowing for integration of heterogeneous data sets.

We present a workflow for the 13C isotope-based Metabolic Flux Analysis (13C-MFA). The core of any 13C-MFA study is the metabolic network modeling workflow. It consists of sub-tasks involving model set-up and acquisition of measurement data sets within a graphical environment, the evaluation of the model equations and, finally, the visualization of data and simulation results. Human intervention and the integration of various knowledge and data sources is crucial in each step of the modeling workflow. A scientific workflow framework is presented that serves for organization and automation of complex analysis processes involved in 13C-MFA applications. By encapsulating technical details and avoiding recurrent issues, sources for errors are minimized, the evaluation procedure for 13C labeling experiments is accelerated and, moreover, becomes documentable.

Keywords

Scientific Workflows Human Tasks Database Integration 13C-MFA SOA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barseghian, D., Altintas, I., Jones, M.B., Crawl, D., Potter, N., Gallagher, J., Cornillon, P., Schildhauer, M., Borer, E.T., Seabloom, E.W., Hosseini, P.R.: Workflows and extensions to the kepler scientific workflow system to support environmental sensor data access and analysis. Ecological Informatics 5(1), 42–50 (2010)CrossRefGoogle Scholar
  2. 2.
    Dörnemann, T., Juhnke, E., Freisleben, B.: On-Demand Resource Provisioning for BPEL Workflows Using Amazon’s Elastic Compute Cloud. In: Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2009), pp. 140–147. IEEE Press, Los Alamitos (2009)CrossRefGoogle Scholar
  3. 3.
    Droste, P., von Lieres, E., Wiechert, W., Nöh, K.: Customizable Visualization on Demand for Hierarchically Organized Information in Biochemical Networks. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 163–174. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Droste, P., Noack, S., Nöh, K., Wiechert, W.: Customizable Visualization of Multi-omics Data in the Context of Biochemical Networks, pp. 21–25. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  5. 5.
    Droste, P., Weitzel, M., Wiechert, W.: Visual exploration of isotope labeling networks in 3D. Bioprocess and Biosystems Engineering 31, 227–239 (2007)CrossRefGoogle Scholar
  6. 6.
    Heinzl, S., Mathes, M., Friese, T., Smith, M., Freisleben, B.: Flex-SwA: Flexible Exchange of Binary Data Based on SOAP Messages with Attachments. In: Proc. of the IEEE International Conference on Web Services, Chicago, USA, pp. 3–10. IEEE Press, Los Alamitos (2006)Google Scholar
  7. 7.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34, 729–732 (2006)CrossRefGoogle Scholar
  8. 8.
    Juhnke, E., Seiler, D., Stadelmann, T., Dörnemann, T., Freisleben, B.: LCDL: An Extensible Framework for Wrapping Legacy Code. In: Proceedings of ERPAS 2009, pp. 646–650 (2009)Google Scholar
  9. 9.
    Juhnke, E., Dörnemann, T., Freisleben, B.: Fault-Tolerant BPEL Workflow Execution via Cloud-Aware Recovery Policies. In: Software Engineering And Advanced Applications, SEAA 2009, pp. 31–38 (2009)Google Scholar
  10. 10.
    Kitano, H.: Systems Biology: A Brief Overview. Science 295(5560), 1662–1664 (2002)CrossRefGoogle Scholar
  11. 11.
    Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-based service composition. BMC Bioinformatics 10(suppl. 10),  S8 (2009)Google Scholar
  12. 12.
    Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich, R.: GeneFisher-P: variations of GeneFisher as processes in Bio-jETI. BMC Bioinformatics 9(suppl. 4), S13 (2008)Google Scholar
  13. 13.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and Computation: Practice and Experience  18(10), 1039–1065 (2006)Google Scholar
  14. 14.
    Mietzner, R., Karastoyanova, D., Leymann, F.: Business Grid: Combining Web Services and the Grid. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 136–151. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Möllney, M., Wiechert, W., Kownatzki, D., de Graaf, A.A.: Bidirectional reaction steps in metabolic networks,: Optimal design of isotopomer labeling experiments. Biotechnology and Bioengineering 66(2), 86–103 (1999)CrossRefGoogle Scholar
  16. 16.
    Neuweger, H., Albaum, S.P., Dondrup, M., Persicke, M., Watt, T., Niehaus, K., Stoye, J., Goesmann, A.: Meltdb: a software platform for the analysis and integration of metabolomics experiment data. Bioinformatics 24(23), 2726–2732 (2008)CrossRefGoogle Scholar
  17. 17.
    Ngu, A.H., Bowers, S., Haasch, N., Mcphillips, T., Critchlow, T.: Flexible Scientific Workflow Modeling Using Frames, Templates, and Dynamic Embedding. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 566–572. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Nielsen, J., Jewett, M.C.: Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Research 8(1), 122–131 (2008)CrossRefGoogle Scholar
  19. 19.
    Shoshani, A., Rotem, D.: Scientific Data Management: Challenges, Technology, and Deployment. Chapman & Hall/CRC (2009)Google Scholar
  20. 20.
    Tan, W., Missier, P., Foster, I., Madduri, R., De Roure, D., Goble, C.: A Comparison of Using Taverna and BPEL in Building Scientific Workflows: the case of caGrid. Concurr. Comput.: Pract. Exper. 22(9), 1098–1117 (2010)Google Scholar
  21. 21.
    Tang, Y.J., Martin, H.G., Myers, S., Rodriguez, S., Baidoo, E.E.K., Keasling, J.D.: Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrometry Reviews 28(2), 362–375 (2009)CrossRefGoogle Scholar
  22. 22.
    Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific Workflows for Grids. Springer, New York (2006)Google Scholar
  23. 23.
    Wächter, A.: An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering. Ph.D. thesis, Carnegie Mellon University (2002)Google Scholar
  24. 24.
    Wang, J., Crawl, D., Altintas, I.: Kepler + Hadoop: A General Architecture Facilitating Data-Intensive Applications in Scientific Workflow Systems. In: WORKS 2009: Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science, pp. 1–8. ACM, New York (2009)Google Scholar
  25. 25.
    Weitzel, M.: High Performance Algorithms for Metabolic Flux Analysis. Ph.D. thesis, University of Siegen, Germany (2009)Google Scholar
  26. 26.
    Wiechert, W.: 13C Metabolic Flux Analysis. Metababolic Engineering 3(3), 195–206 (2001)CrossRefGoogle Scholar
  27. 27.
    Wiechert, W., Siefke, C., de Graaf, A.A., Marx, A.: Bidirectional reaction steps in metabolic networks, Part II: Flux estimation and statistical analysis. Biotechnology and Bioengineering 55(1), 118–135 (1997)CrossRefGoogle Scholar
  28. 28.
    Zamboni, N., Fendt, S.M., Rühl, M., Sauer, U.: 13C-based metabolic flux analysis. Nature Protocols 4(6), 878–892 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tolga Dalman
    • 1
  • Peter Droste
    • 1
  • Michael Weitzel
    • 1
  • Wolfgang Wiechert
    • 1
  • Katharina Nöh
    • 1
  1. 1.Institute of Biotechnology 2Forschungszentrum JülichJülichGermany

Personalised recommendations