Towards Resource-Optimal Routing Plans for Real-Time Traffic

  • Alessandro Lori
  • Giovanni Stea
  • Gigliola Vaglini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6415)


We discuss the issue of computing resource-optimal routing plans in a network domain. Given a number of known traffic demands, with associated required delays, we discuss how to route them and allocate resources for them at each node so that the demands are satisfied. While a globally optimal routing plan requires joint computation of the paths and of the associated resources (which was claimed to be NP-hard), in this paper we stick to existing approaches for path computation, and use mathematical programming to model resource allocation once the paths are computed. We show that the problem is either convex or non-convex, depending on the scheduling algorithms adopted at the nodes. Our results show that, by computing resources per-path, instead of globally, the available capacity can be exceeded even at surprisingly low utilizations.


Schedule Algorithm Rate Allocation Resource Allocation Problem Path Computation Earliest Deadline First 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet Architecture: an Overview. RFC 1633, The Internet Society (June 1994)Google Scholar
  2. 2.
    Rosen, E., Viswanathan, A., Callon, R.: Multi Protocol Label Switching Architecture. IETF RFC 3031 (2001)Google Scholar
  3. 3.
    Le Boudec, J.-Y., Thiran, P.: Network Calculus. LNCS, vol. 2050. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  4. 4.
    Parekh, K., Gallager, R.G.: A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: the Single Node Case. IEEE/ACM Trans. on Networking 1, 344–357 (1993)CrossRefGoogle Scholar
  5. 5.
    Shreedhar, M., Varghese, G.: Efficient Fair Queueing Using Deficit Round Robin. IEEE/ACM Trans. on Networking 4, 375–385 (1996)CrossRefGoogle Scholar
  6. 6.
    Cappanera, P., Lenzini, L., Lori, A., Stea, G., Vaglini, G.: Optimal Link Scheduling for Real-time Traffic in Wireless Mesh Networks in both Per-flow and Per-path Frameworks. In: Proceedings of WoWMoM 2010, Montreal, CA (June 2010)Google Scholar
  7. 7.
    Zhang, H.: Service Disciplines for Guaranteed Performance Service in Packet-Switching Networks. Proceedings of the IEEE 83(10), 1374–1396 (1995)CrossRefGoogle Scholar
  8. 8.
    Stiliadis, D., Varma, A.: Latency-Rate Servers: A General Model for Analysis of Traffic Scheduling Algorithms. IEEE Transaction on Networking 6(5), 675–689 (1998)Google Scholar
  9. 9.
    Goyal, P., Vin, H.M., Cheng, H.: Start-Time Fair Queueing: A Scheduling Algorithm for Integrated Services Packet Switching Networks. IEEE/ACM Trans. on Networking 5(5), 690–704 (1997)CrossRefGoogle Scholar
  10. 10.
    Golestani, S.J.: A Self-Clocked Fair Queueing Scheme for Broadband Applications. In: Proc. of IEEE INFOCOM 1994, Toronto, Canada, pp. 636–646 (June 1994)Google Scholar
  11. 11.
    Lenzini, L., Mingozzi, E., Stea, G.: Tradeoffs between Low Complexity, Low Latency and Fairness with Deficit Round Robin Schedulers. IEEE/ACM Transactions on Networking, 681–693 (August 2004)Google Scholar
  12. 12.
    Lenzini, L., Mingozzi, E., Stea, G.: Performance Analysis of Modified Deficit Round Robin Schedulers. IOS Journal of High-Speed Networks 16(4), 399–422 (2007)Google Scholar
  13. 13.
    Lenzini, L., Mingozzi, E., Stea, G.: Eligibility-Based Round Robin for Fair and Efficient Packet Scheduling in Interconnection Networks. IEEE Transactions on Parallel and Distributed Systems, 254–266 (March 2004)Google Scholar
  14. 14.
    Zhang, L.: Virtual clock: a new traffic control algorithm for packet switching networks. ACM SIGCOMM Computer Communication Review 20(4), 19–29 (1990)CrossRefGoogle Scholar
  15. 15.
    Bennett, J.C.R., Zhang, H.: WF2Q: Worst-case Fair Weighted Fair Queueing. In: INFOCOM 1996 (March 1996)Google Scholar
  16. 16.
    Osborne, E., Simha, A.: Traffic Engineering with MPLS. Cisco Press (July 17, 2002)Google Scholar
  17. 17.
    Awduche, D., Malcolm, J., Agogbua, D., O’Dell, M., McManus, J.: Requirements for Traffic Engineering Over MPLS. RFC 2702 (September 1999)Google Scholar
  18. 18.
    Ma, Q., Steenkiste, P.: Quality-of-Service Routing for Traffic with Performance Guarantees. IFIP Networking (1997)Google Scholar
  19. 19.
    Orda, A.: Routing with End to End QoS Guarantees in Broadband Networks. IEEE/ACM Transactions on Networking (1999)Google Scholar
  20. 20.
    Diwan, A., Kuri, J., Kumar, A.: Optimal per-Node Rate Allocation to provide per-Flow End-to-End Delay Guarantees in a Network of Routers supporting Guaranteed Service Class. In: ICC 2002, New York, USA, April 28 - May 2, vol. 2, pp. 1112–1117 (2002)Google Scholar
  21. 21.
    Misra, S., Xue, G., Yang, D.: Polynomial Time Approximations for Multi-Path Routing with Bandwidth and Delay Constraints. In: INFOCOM 2009 (2009)Google Scholar
  22. 22.
    Lorenz, D.H., Orda, A.: Optimal Partition of QoS Requirements on Unicast Paths and Multicast Trees. IEEE/ACM Transactions on Networking 10(1), 102–114 (2002)CrossRefGoogle Scholar
  23. 23.
    Yang, W.-L.: Optimal and heuristic algorithms for quality-of-service routing with multiple constraints. Performance Evaluation 57, 261–278 (2004)CrossRefGoogle Scholar
  24. 24.
    Elsayed, K.M.F.: A Framework for End-to-End Deterministic-Delay Service Provisioning in Multiservice Packet Networks. IEEE Transactions on Multimedia 7(3), 563–571 (2005)CrossRefGoogle Scholar
  25. 25.
    Saad, M., Leon-Garcia, A., Yu, W.: Optimal Network Rate Allocation under End-to-End Quality-of-Service Requirements. IEEE Transactions on Network and Service Management 4(3) (December 2007)Google Scholar
  26. 26.
    Chen, S., Nahrstedt, K.: An Overview of Quality-of-Service Routing for the Next Generation High-Speed Networks: Problems and Solutions. IEEE Network Mag. 12(6), 64–79 (1998)CrossRefGoogle Scholar
  27. 27.
    Kar, K., Kodialam, M., Lakshman, T.V.: Minimum Interference Routing of Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering Applications. IEEE Journal on Selected Areas in Communications 18, 2566–2579 (2000)CrossRefGoogle Scholar
  28. 28.
    ILOG CPLEX software,
  29. 29.
    BARON solver (available freely via the NEOS server),
  30. 30.
    Jiang, Y., Liu, Y.: Stochastic Network Calculus. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  31. 31.
    Lenzini, L., Martorini, L., Mingozzi, E., Stea, G.: Tight End-to-end Per-flow Delay Bounds in FIFO Multiplexing Sink-tree Networks. Performance Evaluation 63, 956–987 (2006)CrossRefGoogle Scholar
  32. 32.
    Lobo, M., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of Second-Order Cone Programming. Linear Algebra and its Applications 284, 193–228 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alessandro Lori
    • 1
  • Giovanni Stea
    • 1
  • Gigliola Vaglini
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversity of PisaPisaItaly

Personalised recommendations