We perform a detailed analysis of the network constituted by the citations in a legal code, we search for hidden structures and properties. The graph associated to the Environmental code has a small-world structure and it is partitioned in several hidden communities of articles that only partially coincide with the organization of the code as given by its table of content. Several articles are also connected with a low number of articles but are intermediate between large communities. The structure of the Environmental Code is contrasting with the reference network of all the French Legal Codes that presents a rich-club of ten codes very central to the whole French legal system, but no small-world property. This comparison shows that the structural properties of the reference network associated to a legal system strongly depends on the scale and granularity of the analysis, as is the case for many complex systems.


Legal complexity graph theory network analysis Environmental Code citation network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourcier, D., Mazzega, P.: Toward measure of complexity in legal systems. In: Proc. 11th Intern. Conf. on Artificial Intelligence and Law, Stanford Law School, Stanford, California USA, June 4-8, pp. 211–215. ACM Press, New York (2007)Google Scholar
  2. 2.
    Mazzega, P., Bourcier, D., Boulet, R.: The Network of French Legal Codes. In: Proc. 12th Intern. Conf. on Artificial Intelligence and Law (ICAIL), Barcelona, Spain, June 8-12, pp. 236–237. ACM, New York (2009)Google Scholar
  3. 3.
    Bourcier, D., Mazzega, P.: Codification, law article and graphs. In: Jurix, Lodder, A.R., Mommers, L. (eds.) Legal Knowledge and Information Systems, pp. 29–38. IOS Press, Amsterdam (2007)Google Scholar
  4. 4.
    Fowler, J.H., Jeon, S.: The authority of Supreme Court precedent. Social Networks 30, 16–30 (2008)CrossRefGoogle Scholar
  5. 5.
    Fowler, J.H., Johnson, T.R., Spriggs II, J.F., Jeon, S., Wahlbeck, P.J.: Network Analysis and the Law : Measuring the Legal Importance of Precedents at the U.S. Supreme Court. Political Analysis 15, 324–346 (2007)CrossRefGoogle Scholar
  6. 6.
    Chandler, S.J.: The Network Structure of Supreme Court Jurisprudence. Public Law and Legal Theory Series 2005-W-01 (Technical report), University of Houston Law Center (2005)Google Scholar
  7. 7.
    Bommarito, M.J., Katz, D.M.: Properties of the United States Code Citation Network. LSN Experimental and Empirical Studies (2009)Google Scholar
  8. 8.
    Chandler, S.J.: The Network Structure of the Uniform Commercial Code: It’s a Small World After All. Paper presented at the 2005 Wolfram Technology Conference (2005)Google Scholar
  9. 9.
    Légifrance: Service Public de la Diffusion du Droit (2009),
  10. 10.
    Fell, D.A., Wagner, A.: The small world of metabolism. Nat. Biotech. 11(18), 1121–1122 (2000)CrossRefGoogle Scholar
  11. 11.
    Newman, M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98(2), 404–409 (2001)CrossRefGoogle Scholar
  12. 12.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  13. 13.
    Watts, D.J.: Small worlds: The dynamics of networks between order and randomness. Princeton University Press, Princeton (2003)Google Scholar
  14. 14.
    Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing 71, 1257–1273 (2008)CrossRefGoogle Scholar
  15. 15.
    Kogut, B., Walker, G.: The Small World of Germany and the Durability of National Networks. American Sociological Review 66(3), 317–335 (2001)CrossRefGoogle Scholar
  16. 16.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (2009)Google Scholar
  17. 17.
    Pastor-Satorras, R., Vespignani, A.: Internet, Structure et Evolution. Editions Belin (2004)Google Scholar
  18. 18.
    Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social Networks 1(3), 215–239 (1979)CrossRefGoogle Scholar
  19. 19.
    von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing 17(4), 395–416 (2007)CrossRefGoogle Scholar
  20. 20.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  21. 21.
    Commission Supérieure de Codification : Dix-neuvième rapport annuel (2008),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Romain Boulet
    • 1
  • Pierre Mazzega
    • 1
  • Danièle Bourcier
    • 2
  1. 1.CNRS IRD, LMTG ToulouseUniversité de Toulouse, UPS (OMP)ToulouseFrance
  2. 2.CERSA CNRSUniversité de Paris 2ParisFrance

Personalised recommendations