Schema Mapping Evolution Through Composition and Inversion

  • Ronald Fagin
  • Phokion G. Kolaitis
  • Lucian Popa
  • Wang-Chiew Tan
Chapter
Part of the Data-Centric Systems and Applications book series (DCSA)

Abstract

Mappings between different representations of data are the essential building blocks for many information integration tasks. A schema mapping is a high-level specification of the relationship between two schemas, and represents a useful abstraction that specifies how the data from a source format can be transformed into a target format. The development of schema mappings is laborious and time consuming, even in the presence of tools that facilitate this development. At the same time, schema evolution inevitably causes the invalidation of the existing schema mappings (since their schemas change). Providing tools and methods that can facilitate the adaptation and reuse of the existing schema mappings in the context of the new schemas is an important research problem. In this chapter, we show how two fundamental operators on schema mappings, namely composition and inversion, can be used to address the mapping adaptation problem in the context of schema evolution. We illustrate the applicability of the two operators in various concrete schema evolution scenarios, and we survey the most important developments on the semantics, algorithms, and implementation of composition and inversion. We also discuss the main research questions that still remain to be addressed.

Notes

Acknowledgements

The authors thank Erhard Rahm for reading an earlier version of this chapter and providing valuable feedback. The research of Kolaitis and Tan is supported by NSF grant IIS-0430994 and NSF grant IIS-0905276. Tan is also supported by NSF CAREER award IIS-0347065.

References

  1. .
    Alexe B, Hernández MA, Popa L, Tan WC (2010) MapMerge: Correlating independent schema mappings. In: PVLDB, vol 3(1), pp 81–92Google Scholar
  2. .
    Arenas M, Pérez J, Riveros C (2008) The recovery of a schema mapping: Bringing exchanged data back. In: PODS. ACM, NY, pp 13–22Google Scholar
  3. .
    Bernstein PA (2003) Applying model management to classical meta-data problems. In: Conference on innovative data systems research (CIDR), Asilomar, CA, pp 209–220Google Scholar
  4. .
    Bernstein PA, Green TJ, Melnik S, Nash A (2008) Implementing mapping composition. VLDB J 17(2):333–353CrossRefGoogle Scholar
  5. .
    Chandra AK, Merlin PM (1977) Optimal implementation of conjunctive queries in relational data bases. In: ACM symposium on theory of computing (STOC). ACM, NY, pp 77–90Google Scholar
  6. .
    Curino C, Moon HJ, Zaniolo C (2008) Graceful database schema evolution: The PRISM workbench. PVLDB 1(1):761–772Google Scholar
  7. .
    Deutsch A, Tannen V (2003) MARS: A system for publishing XML from mixed and redundant storage. In: International conference on very large data bases (VLDB). VLDB Endowment,pp 201–212Google Scholar
  8. .
    Deutsch A, Popa L, Tannen V (1999) Physical data independence, constraints and optimization with universal plans. In: International conference on very large data bases (VLDB). Morgan Kaufmann, CA, pp 459–470Google Scholar
  9. .
    Deutsch A, Popa L, Tannen V (2006) Query reformulation with constraints. SIGMOD Rec 35(1):65–73CrossRefGoogle Scholar
  10. .
    Fagin R (2007) Inverting schema mappings. ACM Trans Database Syst (TODS) 32(4), Article No. 11Google Scholar
  11. .
    Fagin R, Kolaitis PG, Popa L, Tan WC (2004) Composing schema mappings: Second-order dependencies to the rescue. In: ACM symposium on principles of database systems (PODS). ACM, NY, pp 83–94Google Scholar
  12. .
    Fagin R, Kolaitis PG, Miller RJ, Popa L (2005a) Data exchange: Semantics and query answering. Theor Comput Sci (TCS) 336(1):89–124MathSciNetMATHCrossRefGoogle Scholar
  13. .
    Fagin R, Kolaitis PG, Popa L, Tan WC (2005b) Composing schema mappings: Second-order dependencies to the rescue. ACM Trans Database Syst (TODS) 30(4):994–1055CrossRefGoogle Scholar
  14. .
    Fagin R, Kolaitis PG, Nash A, Popa L (2008a) Towards a theory of schema-mapping optimization. In: ACM symposium on principles of database systems (PODS). ACM, NY, pp 33–42Google Scholar
  15. .
    Fagin R, Kolaitis PG, Popa L, Tan WC (2008b) Quasi-inverses of schema mappings. ACM Trans Database Syst (TODS) 33(2), Article No. 11Google Scholar
  16. .
    Fagin R, Haas LM, Hernández MA, Miller RJ, Popa L, Velegrakis Y (2009a) Clio: Schema mapping creation and data exchange. In: Conceptual modeling: Foundations and applications, Essays in Honor of John Mylopoulos. Springer, Heidelberg, pp 198–236Google Scholar
  17. .
    Fagin R, Kolaitis PG, Popa L, Tan WC (2009b) Reverse data exchange: Coping with nulls. In: ACM symposium on principles of database systems (PODS). ACM, NY, pp 23–32Google Scholar
  18. .
    Fagin R, Kolaitis PG, Popa L, Tan WC (2010) Reverse data exchange: Coping with nulls. In: ACM symposium on principles of database systems (PODS). ACM, NY, pp 23–32Google Scholar
  19. .
    Haas LM, Hernández MA, Ho H, Popa L, Roth M (2005) Clio grows up: From research prototype to industrial tool. In: SIGMOD. ACM, NY, pp 805–810Google Scholar
  20. .
    Hartung M, Terwilliger J, Rahm E (2011) Recent advances in schema and ontology evolution. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping. Data-Centric Systems and Applications Series. Springer, HeidelbergGoogle Scholar
  21. .
    Lenzerini M (2002) Data integration: A theoretical perspective. In: ACM symposium on principles of database systems (PODS). ACM, NY, pp 233–246Google Scholar
  22. .
    Madhavan J, Halevy AY (2003) Composing mappings among data sources. In: International conference on very large data bases (VLDB). VLDB Endowment, pp 572–583Google Scholar
  23. .
    Melnik S (2004) Generic model management: Concepts and algorithms. Lecture Notes in Computer Science, vol 2967. Springer, HeidelbergGoogle Scholar
  24. .
    Melnik S, Bernstein PA, Halevy A, Rahm E (2005) Applying model management to executable mappings. In: SIGMOD, ACM, NY, pp 167–178Google Scholar
  25. .
    Nash A, Bernstein PA, Melnik S (2005) Composition of mappings given by embedded dependencies. In: ACM symposium on principles of database systems (PODS). ACM, NY,pp 172–183Google Scholar
  26. .
    Shu NC, Housel BC, Taylor RW, Ghosh SP, Lum VY (1977) EXPRESS: A data extraction, processing, amd restructuring system. ACM Trans Database Syst (TODS) 2(2):134–174CrossRefGoogle Scholar
  27. .
    Velegrakis Y, Miller RJ, Popa L (2003) Mapping adaptation under evolving schemas. In: International conference on very large data bases (VLDB). VLDB Endowment, pp 584–595Google Scholar
  28. .
    Yu C, Popa L (2005) Semantic adaptation of schema mappings when schemas evolve. In: VLDB. VLDB Endowment, pp 1006–1017Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ronald Fagin
    • 1
  • Phokion G. Kolaitis
    • 1
    • 2
  • Lucian Popa
    • 1
  • Wang-Chiew Tan
    • 1
    • 2
  1. 1.IBM Almaden Research CenterSan JoseUSA
  2. 2.UC Santa CruzSanta CruzUSA

Personalised recommendations