Discovery and Correctness of Schema Mapping Transformations

  • Angela Bonifati
  • Giansalvatore Mecca
  • Paolo Papotti
  • Yannis Velegrakis
Part of the Data-Centric Systems and Applications book series (DCSA)


Schema mapping is becoming pervasive in all data transformation, exchange, and integration tasks. It brings to the surface the problem of differences and mismatches between heterogeneous formats and models, respectively, used in source and target databases to be mapped one to another. In this chapter, we start by describing the problem of schema mapping, its background, and technical implications. Then, we outline the early schema mapping systems, along with the new generation of schema mapping tools. Moving from the former to the latter entailed a dramatic change in the performance of mapping generation algorithms. Finally, we conclude the chapter by revisiting the query answering techniques allowed by the mappings, and by discussing useful applications and future and current developments of schema mapping tools.


Schema Mapping Target Schema Conjunctive Query Query Answering Universal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. .
    Abiteboul S, Duschka OM (1998) Complexity of answering queries using materialized views. In: PODS. ACM, NY, pp 254–263Google Scholar
  2. .
    Abiteboul S, Cluet S, Milo T (1997) Correspondence and translation for heterogeneous data. In: ICDT, Delphi, Greece. Springer, London, pp 351–363Google Scholar
  3. .
    Abu-Hamdeh R, Cordy J, Martin T (1994) Schema translation using structural transformation. In: CASCON. IBM Press, pp 202–215Google Scholar
  4. .
    Amano S, Libkin L, Murlak F (2009) XML schema mappings. In: PODS. ACM, NY, pp 33–42Google Scholar
  5. .
    An Y, Borgida A, Miller R, Mylopoulos J (2007) In: Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, April 15–20, 2007, The Marmara Hotel, Istanbul, TurkeyGoogle Scholar
  6. .
    Arenas M, Libkin L (2008) XML data exchange: Consistency and query answering. J ACM 55(2):1–72MathSciNetCrossRefGoogle Scholar
  7. .
    Atzeni P, Torlone R (1995) Schema translation between heterogeneous data models in a lattice framework. In: Data semantics conference. Chapman & Hall, London, pp 345–364Google Scholar
  8. .
    Atzeni P, Torlone R (1997) MDM: A multiple-data model tool for the management of heterogeneous database schemes. In: SIGMOD. ACM, NY, pp 528–531Google Scholar
  9. .
    Beeri C, Milo T (1999) Schemas for intergration and translation of structured and semi-structured data. In: ICDT. Springer, London, pp 296–313Google Scholar
  10. .
    Beeri C, Vardi M (1984) A proof procedure for data dependencies. J ACM 31(4):718–741MathSciNetzbMATHCrossRefGoogle Scholar
  11. .
    Bonifati A, Chang EQ, Ho T, Lakshmanan L, Pottinger R (2005) HePToX: Marrying XML and heterogeneity in your P2P databases. In: VLDB. VLDB Endowment, pp 1267–1270Google Scholar
  12. .
    Bonifati A, Mecca G, Pappalardo A, Raunich S, Summa G (2008) Schema mapping verification: The spicy way. In: EDBT. ACM, NY, pp 85–96Google Scholar
  13. .
    Bonifati A, Chang EQ, Ho T, Lakshmanan L, Pottinger R, Chung Y (2010) Schema mapping and query translation in heterogeneous P2P XML databases. VLDB J 19(2):231–256CrossRefGoogle Scholar
  14. .
    Cabibbo L (2009) On keys, foreign keys and nullable attributes in relational mapping systems. In: EDBT. ACM, NY, pp 263–274Google Scholar
  15. .
    Calì A, Gottlob G, Lukasiewicz T (2009a) Datalog ± : A unified approach to ontologies and integrity constraints. In: ICDT. ACM, NY, pp 14–30Google Scholar
  16. .
    Calì A, Gottlob G, Lukasiewicz T (2009b) A general datalog-based framework for tractable query answering over ontologies. In: PODS. ACM, NY, pp 77–86Google Scholar
  17. .
    Calvanese D, De Giacomo G, Lenzerini M, Rosati R (2004) Logical foundations of peer-to-peer data integration. In: ACM PODS. ACM, NY, pp 241–251Google Scholar
  18. .
    Chandra AK, Merlin PM (1977) Optimal implementation of conjunctive queries in relational data bases. In: STOC. ACM, NY, pp 77–90Google Scholar
  19. .
    Chiticariu L (2005) Computing the core in data exchange: Algorithmic issues. MS Project Report, unpublished manuscriptGoogle Scholar
  20. .
    Cluet S, Delobel C, Siméon J, Smaga K (1998) Your mediators need data conversion! In: SIGMOD. ACM, NY, pp 177–188Google Scholar
  21. .
    Davidson S, Kosky A (1997) IEEE Computer Society. In: Proceedings of the Thirteenth International Conference on Data Engineering, April 7–11, 1997 Birmingham UKGoogle Scholar
  22. .
    Deutsch A, Popa L, Tannen V (1999) Physical data independence, constraints, and optimization with universal plans. In: VLDB. Morgan Kaufmann, CA, pp 459–470Google Scholar
  23. .
    Fagin R (2007) Inverting schema mappings. ACM TODS 32(4)Google Scholar
  24. .
    Fagin R, Kolaitis P, Miller R, Popa L (2005a) Data exchange: Semantics and query answering. TCS 336(1):89–124MathSciNetzbMATHCrossRefGoogle Scholar
  25. .
    Fagin R, Kolaitis P, Popa L (2005b) Data exchange: Getting to the core. ACM TODS 30(1):174–210MathSciNetCrossRefGoogle Scholar
  26. .
    Fagin R, Kolaitis P, Nash A, Popa L (2008) Towards a theory of schema-mapping optimization. In: ACM PODS. ACM, NY, pp 33–42Google Scholar
  27. .
    Fagin R, Haas LM, Hernandez M, Miller RJ, Popa L, Velegrakis Y (2009) Clio: Schema mapping creation and data exchange. In: Borgida A, Chaudhri V, Giorgini P, Yu E (eds) Conceptual modeling: Foundations and applications. Springer, Heidelberg, pp 198–236CrossRefGoogle Scholar
  28. .
    Fuxman A, Hernández MA, Howard CT, Miller RJ, Papotti P, Popa L (2006) Nested mappings: Schema mapping reloaded. In: VLDB. VLDB Endowment, pp 67–78Google Scholar
  29. .
    Gottlob G, Nash A (2008) Efficient core computation in data exchange. J ACM 55(2):1–49MathSciNetCrossRefGoogle Scholar
  30. .
    Gottlob G, Pichler R, Savenkov V (2009) Normalization and optimization of schema mappings. PVLDB 2(1):1102–1113Google Scholar
  31. .
    Haas LM (2007) Lecture Notes in Computer Science, vol. 4353. In: ICDT, Springer.Google Scholar
  32. .
    Halevy AY (2010) Technical perspective – schema mappings: Rules for mixing data. Commun CACM 53(1):100CrossRefGoogle Scholar
  33. .
    Hell P, Nešetřil J (1992) The core of a graph. Discrete Math 109(1–3):117–126MathSciNetzbMATHCrossRefGoogle Scholar
  34. .
    Hernández MA, Papotti P, Tan WC (2008) Data exchange with data-metadata translations. PVLDB 1(1):260–273Google Scholar
  35. .
    Hull R, Yoshikawa M (1990) ILOG: Declarative creation and manipulation of object identifiers. In: VLDB. Morgan Kaufmann, CA, pp 455–468Google Scholar
  36. .
    Ives ZG, Halevy AY, Mork P, Tatarinov I (2004) Piazza: Mediation and integration infrastructure for semantic web data. J Web Sem 1(2):155–175CrossRefGoogle Scholar
  37. .
    Ives ZG, Green TJ, Karvounarakis G, Taylor NE, Tannen V, Talukdar PP, Jacob M, Pereira F(2008) The orchestra collaborative data sharing system. SIGMOD Rec 37(3):26–32CrossRefGoogle Scholar
  38. .
    Jiang H, Ho H, Popa L, Han W (2007) Mapping-driven XML transformation. In: WWW conference. ACM, NY, pp 1063–1072Google Scholar
  39. .
    Levy AY, Mendelzon A, Sagiv Y, Srivastava D (1995) Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems. ACM Press, San Jose, California, May 22–25, 1995Google Scholar
  40. .
    Maier D, Mendelzon AO, Sagiv Y (1979) Testing implications of data dependencies. ACM TODS 4(4):455–469CrossRefGoogle Scholar
  41. .
    Maier D, Ullman JD, Vardi MY (1984) On the foundations of the universal relation model. ACM TODS 9(2):283–308MathSciNetzbMATHCrossRefGoogle Scholar
  42. .
    Marnette B (2009) Generalized schema mappings: From termination to tractability. In: ACM PODS. ACM, NY, pp 13–22Google Scholar
  43. .
    Marnette B, Mecca G, Papotti P (2010) Scalable data exchange with functional dependencies. PVLDB 3(1):106–116Google Scholar
  44. .
    Mecca G, Papotti P, Raunich S (2009a) Core schema mappings. In: SIGMOD. ACM, NY, pp 655–668Google Scholar
  45. .
    Mecca G, Papotti P, Raunich S, Buoncristiano M (2009b) Concise and expressive mappings with + Spicy. PVLDB 2(2):1582–1585Google Scholar
  46. .
    Melnik S, Bernstein P, Halevy A, Rahm E (2005) Supporting executable mappings in model management. In: SIGMOD. ACM, NY, pp 167–178Google Scholar
  47. .
    Miller RJ, Haas LM, Hernandez MA (2000) Schema mapping as query discovery. In: VLDB. Morgan Kaufmann, CA, pp 77–99Google Scholar
  48. .
    Milo T, Zohar S (1998) Using schema matching to simplify heterogeneous data translation. In: VLDB. Morgan Kaufmann, CA, pp 122–133Google Scholar
  49. .
    OWL-Full (2004) OWL web ontology language reference. http://www.#OWLFull
  50. .
    Popa L (2000) Object/relational query optimization with chase and backchase. PhD thesis, University of PennsylvaniaGoogle Scholar
  51. .
    Popa L, Tannen V (1999) An equational chase for path-conjunctive queries, constraints, and views. In: ICDT. Springer, London, pp 39–57Google Scholar
  52. .
    Popa L, Velegrakis Y, Miller RJ, Hernandez MA, Fagin R (2002) Translating web data. In: VLDB. VLDB Endowment, pp 598–609Google Scholar
  53. .
    Pottinger R, Halevy A (2001) Minicon: A scalable algorithm for answering queries using views. VLDB J 10(2–3):182–198zbMATHGoogle Scholar
  54. .
    Raffio A, Braga D, Ceri S, Papotti P, Hernández MA (2008) Clip: A visual language for explicit schema mappings. In: ICDE. IEEE Computer Society, Washington, DC, pp 30–39Google Scholar
  55. .
    Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J 10:334–350zbMATHCrossRefGoogle Scholar
  56. .
    Savenkov V, Pichler R (2008) Towards practical feasibility of core computation in data exchange. In: LPAR. Springer, Heidelberg, pp 62–78Google Scholar
  57. .
    Shu NC, Housel BC, Taylor RW, Ghosh SP, Lum VY (1977) EXPRESS: A data extraction, processing and restructuring system. ACM TODS 2(2):134–174CrossRefGoogle Scholar
  58. .
    ten Cate B, Kolaitis PG (2009) Structural characterizations of schema-mapping languages. In: ICDT. ACM, NY, pp 63–72Google Scholar
  59. .
    ten Cate B, Chiticariu L, Kolaitis P, Tan WC (2009) Laconic schema mappings: Computing core universal solutions by means of SQL queries. PVLDB 2(1):1006–1017Google Scholar
  60. .
    Tork-Roth M, Schwarz PM (1997) Don’t scrap it, wrap it! A wrapper architecture for legacy data sources. In: VLDB. Morgan Kaufmann, CA, pp 266–275Google Scholar
  61. .
    Velegrakis Y (2005) Managing schema mappings in highly heterogeneous environments. PhD thesis, University of TorontoGoogle Scholar
  62. .
    Yu C, Popa L (2004) Constraint-based XML query rewriting for data integration. In: SIGMOD conference. ACM, NY, pp 371–382Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Angela Bonifati
    • 1
  • Giansalvatore Mecca
    • 2
  • Paolo Papotti
    • 3
  • Yannis Velegrakis
    • 4
  1. 1.ICAR-CNRRendeItaly
  2. 2.Università of BasilicataPotenzaItaly
  3. 3.Università Roma TreRomeItaly
  4. 4.Università di TrentoTrentoItaly

Personalised recommendations