Multilabel Classification Using Error Correction Codes

  • Abbas Z. Kouzani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6382)


This paper presents a multilabel classification method that employs an error correction code together with a base ensemble learner to deal with multilabel data. It explores two different error correction codes: convolutional code and BCH code. A random forest learner is used as its based learner. The performance of the proposed method is evaluated experimentally. The popular multilabel yeast dataset is used for benchmarking. The results are compared against those of several exiting approaches. The proposed method performs well against its counterparts.


Multilabel data classification error correction codes ensemble learners random forests 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Journal of Data Warehousing and Mining 3(3), 1–13 (2007)Google Scholar
  2. 2.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn. (2010)Google Scholar
  3. 3.
    Brinker, K., Furnkranz, J., Hullermeier, E.: A united model for multilabel classification and ranking. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, pp. 489–493 (2006)Google Scholar
  4. 4.
    Zhang, M.-L., Zhou, Z.-H.: A k-nearest neighbour based algorithm for multi-label classification. In: Proceedings of IEEE GrC 2005, Beijing, China, pp. 718–721 (2005)Google Scholar
  5. 5.
    Zhang, M.-L., Zhou, Z.-H.: Multi-label neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering 18(10), 1338–1351 (2006)CrossRefGoogle Scholar
  6. 6.
    Tsoumakas, G., Vlahavas, I.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Nasierding, G., Tsoumakas, G., Kouzani, A.Z.: Clustering based multi-label classification for image annotation and retrieval. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, San Antonio, Texas, USA, October 11-14, pp. 4514–4519 (2009)Google Scholar
  8. 8.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD 2008), Antwerp, Belgium (2008)Google Scholar
  9. 9.
    Crammer, C., Singer, Y.: A family of additive online algorithms for category ranking. Machine Learning Research 3, 1025–1058 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Schapire, R.E., Singer, Y.: BoosTexter: A boostingbased system for text categorization. Machine Learning 39, 135–168 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Comite, F.D., Gilleron, R., Tommasi, M.: Learning multi-label alternating decision tree from texts and data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 35–49. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Elisseeff, A., Weston, J.: A kernel method for multilabelled classification. In: Proceedings of NIPS 2002, Cambridge (2002)Google Scholar
  13. 13.
    Platt, J.: Probabilistic Outputs for Support Vector Machines and Comparison to Regularized Likelihood Methods. In: Adv. in Large Margin Classifiers, pp. 61–74. MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Petrovskiy, M.: Paired comparisons method for solving multi-label learning problem. In: Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (2006)Google Scholar
  15. 15.
    Han, Y.S.: Introduction to binary convolutional codes. Notes, Graduate Institute of Communication Engineering, National Taipei UniversityGoogle Scholar
  16. 16.
    Wei, C.-H.: Channel coding notes,
  17. 17.
    Rudra, A.: BCH codes. Lecture 24, Error Correcting Codes: Combinatorics, Algorithms and Applications (2009)Google Scholar
  18. 18.
    Boinee, P., De Angelis, A., Foresti, G.L.: Meta random forests. International Journal of Computational Intelligence 2, 138–147 (2006)Google Scholar
  19. 19.
    Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)MATHCrossRefGoogle Scholar
  20. 20.
    Robnik-Sikonja, M.: Improving random forests. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 359–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Abbas Z. Kouzani
    • 1
  1. 1.School of EngineeringDeakin UniversityGeelongAustralia

Personalised recommendations