Advertisement

An Improved Similarity Algorithm Based on Hesitation Degree for User-Based Collaborative Filtering

  • Xiangwei Mu
  • Yan Chen
  • Jian Yang
  • Jingjing Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6382)

Abstract

With the fast development of World Wide Wed, web-based applications and services should allow users to get the right personalized information quickly and effectively. Collaborative Filtering plays a very important role in web service personalization and Recommender System. In this paper, Hesitation Degree was proposed to improve the accuracy of user based collaboration filtering and three kinds of Hesitation Degree were introduced into similarity computation. The results show that the prediction accuracy can be improved by 11 percents, and Mean Absolute Error can be reduced faster than classic method.

Keywords

stability degree similarity computation collaborative filtering personalized recommendation recommend system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and Evaluating Choices in a Virtual Community of Use. In: Proceedings of CHI 1995 (1995)Google Scholar
  2. 2.
    Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  3. 3.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proceedings of CSCW 1994, Chapel Hill, NC (1994)Google Scholar
  4. 4.
    Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating ‘Word of Mouth’. In: Proceedings of CHI 1995, Denver, CO (1995)Google Scholar
  5. 5.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-Based Collaborative Filtering Recommendation Algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295 (2001)Google Scholar
  6. 6.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)Google Scholar
  7. 7.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  8. 8.
    Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Computer Supported Cooperative Work Conference, pp. 175–186. ACM, New York (1994)CrossRefGoogle Scholar
  9. 9.
    Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: a tour guide for the World Wide Web. In: Georgeff, M.P., Pollack, E.M. (eds.) Proceedings of the International Joint Conference on Artificial Intelligence, pp. 770–777. Morgan Kaufmann Publishers, San Francisco (1997)Google Scholar
  10. 10.
    Lieberman, H., Dyke, N.V., Vivacqua, A.: Let’s browse: a collaborative web browsing agent. In: Maybury, M., Szekely, P., Thomas, C.G. (eds.) Proceedings of the International Conference on Intelligent User Interfaces, pp. 65–68. ACM Press, Los Angeles (1999)Google Scholar
  11. 11.
    Shardanand, U., Maes, P.: Social information filtering: algorithms for automating word of mouth. In: Roberts, T., Robertson, S. (eds.) Proceedings of the ACM CHI 1995 Conference on Human Factors in Computing Systems, pp. 210–217. ACM Press, New York (1995)CrossRefGoogle Scholar
  12. 12.
    Alton-Scheidl, R., Ekhall, J., Geloven, O.V., et al.: SELECT: social and collaborative filtering of web documents and news. In: Kobsa, A., Stephanidis, C. (eds.) Proceedings of the 5th ERCIM Workshop on User Interfaces for All: User-Tailored Information Environments, pp. 23–37 (1999)Google Scholar
  13. 13.
    Rucker, J., Polanco, M.J.: Siteseer: personalized navigation for the web. Communications of the ACM 40(3), 73–75 (1997)CrossRefGoogle Scholar
  14. 14.
    Good, N., Schafer, B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining Collaborative Filtering With Personal Agents for Better Recommendations. In: The AAAI 1999 Conference, pp. 439–446 (1999)Google Scholar
  15. 15.
    Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System. In: Proceedings of CSCW 1998, Seattle,WA (1998)Google Scholar
  16. 16.
    Doob, L.W.: Hesitation: Impulsivity and Reflection, pp. 1–17. Greenwood Press, New York (1990)Google Scholar
  17. 17.
    Xiang-Wei, M., Yan, C., Li-Li, Q., Tao-Ying, L.: A new user profile model based on intuitionistic fuzzy set for personalized information analysis and sharing. In: 2009 International Conference on Management Science and Engineering - 16th Annual Conference Proceedings, ICMSE 2009, pp. 64–69 (2009)Google Scholar
  18. 18.
    Mu, X., Chen, Y., Li, N., Jiang, J.: Modeling of personalized recommendation system based on ontology. In: International Conference on Management and Service Science, MASS 2009, September 20 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xiangwei Mu
    • 1
  • Yan Chen
    • 1
  • Jian Yang
    • 1
  • Jingjing Jiang
    • 2
  1. 1.Transportation Management CollegeDalian Maritime UniversityDalianP.R.China
  2. 2.Department of Information Technology and Business AdministrationDalian Neusoft Institute of InformationLiaoningP.R.China

Personalised recommendations