Ontology Learning for Cost-Effective Large-Scale Semantic Annotation of Web Service Interfaces

  • Shahab Mokarizadeh
  • Peep Küngas
  • Mihhail Matskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6317)


In this paper we introduce a novel unsupervised ontology learning approach, which can be used to automatically derive a reference ontology from a corpus of web services for annotating semantically the Web services in the absence of a core ontology. Our approach relies on shallow parsing technique from natural language processing in order to identify grammatical patterns of web service message element/part names and exploit them in construction of the ontology. The generated ontology is further enriched by introducing relationships between similar concepts. The experimental results on a set of global Web services indicate that the proposed ontology learning approach generates an ontology, which can be used to automatically annotate around 52% of element part and field names in a large corpus of heterogeneous Web services.


Ontology Learning Web Services Annotation NLP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guo, H., Ivan, A., Akkiraju, R., Goodwin, R.: Learning Ontologies to Improve the Quality of Automatic Web Service Matching. In: IEEE Int. Conference on Web Services (ICWS 2007), pp. 118–125 (2007)Google Scholar
  2. 2.
    Küngas, P., Dumas, M.: Cost-Effective Semantic Annotation of XML Schemas and Web Service Interfaces. In: IEEE Int. Conference on Services Computing, pp. 372–379. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  3. 3.
    European Collaborative Clamour Project: Linguistic Work Package Report (2000), http://www.statistics.gov.uk/methods_quality/clamour/coordination/downloads/Clamourdec2000IRn2.doc
  4. 4.
    Lieber, R.: Morphology and Lexical Semantics. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  5. 5.
    Bourigault, D., Jacquemin, C.: Term extraction + term clustering: an integrated platform for computer-aided terminology. In: 9th Conference on European Chapter of the Association for Computational Linguistics, pp. 15–22. ACL, Morristown (1999)Google Scholar
  6. 6.
    Sabou, M., Wroe, C., Goble, C., Mishne, G.: Learning domain ontologies for Web service descriptions: An experiment in bioinformatics. In: Proceedings of the 14th International Conference on World Wide Web, pp. 190–198. ACM, Japan (2005)CrossRefGoogle Scholar
  7. 7.
    Heß, A., Johnston, E., Kushmerick, N.: ASSAM: A Tool for Semi-Automatically Annotating Semantic Web Services. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 320–334. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Pirrò, G., Seco, N.: Design, Implementation and Evaluation of a New Similarity Metric Combining Feature and Intrinsic Information Content. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1271–1288. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Lin, D.: Dependency-based Evaluation of MINIPAR. In: Workshop on the Evaluation of Parsing Systems, First Int. Conf. on Learning Resources and Evaluation, Spain (1998)Google Scholar
  10. 10.
    Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  11. 11.
    Hu, W., Qu, Y.: Falcon-AO: A practical ontology matching system. Web Semantic 6(3), 237–239 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhou, L.: Ontology learning: State of the art and open issues. Information Technology and Management 8, 241–252 (2007)CrossRefGoogle Scholar
  13. 13.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Journal of Human Computer Studies 43(5), 907–928 (1993)Google Scholar
  14. 14.
  15. 15.
    Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: SAWSDL: Semantic Annotations for WSDL and XML Schema. IEEE Internet Computing 11(6), 60–67 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shahab Mokarizadeh
    • 1
  • Peep Küngas
    • 2
  • Mihhail Matskin
    • 1
    • 3
  1. 1.Royal Institute of Technology (KTH)StockholmSweden
  2. 2.University of TartuTartuEstonia
  3. 3.Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations