Advertisement

Detection of Copy-Rotate-Move Forgery Using Zernike Moments

  • Seung-Jin Ryu
  • Min-Jeong Lee
  • Heung-Kyu Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6387)

Abstract

As forgeries have become popular, the importance of forgery detection is much increased. Copy-move forgery, one of the most commonly used methods, copies a part of the image and pastes it into another part of the the image. In this paper, we propose a detection method of copy-move forgery that localizes duplicated regions using Zernike moments. Since the magnitude of Zernike moments is algebraically invariant against rotation, the proposed method can detect a forged region even though it is rotated. Our scheme is also resilient to the intentional distortions such as additive white Gaussian noise, JPEG compression, and blurring. Experimental results demonstrate that the proposed scheme is appropriate to identify the forged region by copy-rotate-move forgery.

Keywords

Digital Forensics Copy-Move Forgery Copy-Rotate-Move Forgery Zernike Moments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Fridrich, J., Soukal, D., Lukáš, J.: Detection of copy-move forgery in digital images. In: Digital Forensic Research Workshop (2003)Google Scholar
  3. 3.
    Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting duplicated image regions. In: Technical Report, TR2004-515, Dartmouth College, Computer Science (2004)Google Scholar
  4. 4.
    Li, G., Wu, Q., Tu, D., Sun, S.: A sorted neighborhood approach for detecting duplicated regions in image forgeries based on DWT and SVD. In: IEEE International Conference on Multimedia and Expo. IEEE Press, New York (2007)Google Scholar
  5. 5.
    Luo, W., Huang, J., Qiu, G.: Robust detection of region-duplication forgery in digital image. In: The 18th International Conference on Pattern Recognition (2006)Google Scholar
  6. 6.
    Mahdian, B., Saic, S.: Detection of copy-move forgery using a method based on blur moment invariants. Forensic Science International 171, 180–189 (2007)CrossRefGoogle Scholar
  7. 7.
    Bayram, S., Sencar, H.T., Memon, N.: An efficient and robust method for detecting copy-move forgery. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE Press, New York (2009)Google Scholar
  8. 8.
    Bravo-Solorio, S., Nandi, A.K.: Passive method for detecting duplicated regions affected by reflection, rotation and scaling. In: 17th European Signal Processing Conference (2009)Google Scholar
  9. 9.
    Huang, H., Guo, W., Zhang, Y.: Detection of copy-move forgery in digital images using SIFT algorithm. In: Pacific-Asia Conference on Computational Intelligence and Industrial Applications (2008)Google Scholar
  10. 10.
    Amerini, I., Ballan, L., Caldelli, R., Bimbo, A.D., Serra, G.: Geometric tampering estimation by means of a SIFT-based forensic analysis. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE Press, New York (2010)Google Scholar
  11. 11.
    Pan, X., Lyu, S.: Detecting image region duplication using SIFT features. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE Press, New York (2010)Google Scholar
  12. 12.
    Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Trans. Information Theory 8, 179–187 (1962)zbMATHGoogle Scholar
  13. 13.
    Kim, H.S., Lee, H.K.: Invariant image watermark using Zernike moments. IEEE Trans. Circuits and Systems for Video Technology 13(8), 766–775 (2003)CrossRefGoogle Scholar
  14. 14.
    Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Analysis and Machine Intelligence 10(4), 496–513 (1988)CrossRefzbMATHGoogle Scholar
  15. 15.
    Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Analysis and Machine Intelligence 12(5), 489–497 (1990)CrossRefGoogle Scholar
  16. 16.
    Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode. Physica 1, 689–704 (1934)CrossRefzbMATHGoogle Scholar
  17. 17.
    Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  18. 18.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Seung-Jin Ryu
    • 1
  • Min-Jeong Lee
    • 1
  • Heung-Kyu Lee
    • 1
  1. 1.Department of Computer ScienceKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations