Comparative Reproductive Biology of Honeybees

  • Gudrun KoenigerEmail author
  • Nikolaus Koeniger
  • Mananya Phiancharoen


The complex social structure and male-biased sex ratio of honeybee mating systems are analysed, followed by detailed treatments of panmictic drone congregation areas and species-specific daily mating flight periods. This is followed by an account of queen polyandry and drone monogamy and competition. Mating on the wing is a finely tuned technical tour de force involving initial docking, establishing the internal connection of drone and queen, the deposition and transfer of sperm and, finally, decoupling of the pair and deposition of a mating sign. Subsequent to mating, the problems of the ultimate storage and utilisation of sperm are discussed. Finally, the matter of reproductive isolation is considered.


Mating Sign Queen Cell Mating Flight Young Queen Spermathecal Duct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams J, Rothman ED, Kerr WE, Paulino ZL (1977) Estimation of sex alleles and queen matings from diploid male frequencies in a population of A. mellifera. Genetics 86:583–596PubMedGoogle Scholar
  2. Allen MD (1965) The effect of a plentiful supply of drone comb on colonies of honeybees. J Apic Res 4:109–119Google Scholar
  3. Baer B, Heazlewood JL, Taylor NL, Eubel H, Millar AH (2009) The seminal fluid proteome of the honeybee Apis mellifera. Proteomics 9:2085–2097PubMedGoogle Scholar
  4. Baudry E, Solignac M, Garnery L, Gries M, Cornuet JM, Koeniger N (1998) Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc R Soc Lond B 265:2009–2014Google Scholar
  5. Buawangpang N, Sukumalanand P, Burgett M (2009) Apis florea drone flight: longevity and flight performance. Apidologie 40:20–25Google Scholar
  6. Burgett DM, Titayavav M, Sukumalonand P (2007) The drone mating flight of the eastern honeybee (A. cerana F.): duration, temporal period and inter-flight period. Nat Hist Bull Siam Soc 55:99–104Google Scholar
  7. Camargo JMF (1972) Preliminary notes on the reproductive system of Apis dorsata and A. florea queens. In: Anonymous (ed) Homeuagem à Warwick E Kerr. Faculdade de Filosofia. Ciências e Letras, Rio Claro, pp 47–56 [in Portuguese]Google Scholar
  8. Camargo JMF, Mello MLS (1970) Anatomy and histology of the genital tract, spermatheca, spermathecal duct and glands of Apis mellifica queens (Hymenoptera: Apidae). Apidologie 1:351–374Google Scholar
  9. Collins AM, Caperna TJ, Williams V, Garett WM, Evans JD (2006) Proteomic analyses of male contributions to honeybee sperm storage and mating. Insect Mol Biol 15:541–549Google Scholar
  10. Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, OxfordGoogle Scholar
  11. Drescher W (1969) Die Flugaktivität von Drohnen der Rasse Apis mellifera carnica und Apis mellifera ligustica in Abhängigkeit von Lebensalter und Witterung. Z Bienenforsch 9:390–409 [in German]Google Scholar
  12. Esslen J, Kaissling KE (1976) Zahl und Verteilung antennaler Sensillen bei der Honigbiene (Apis mellifera L.). Zoomorphologie 83:227–251 [in German]Google Scholar
  13. Franck P, Koeniger N, Lahner G, Crewe R, Solignac M (2000) Evolution of extreme polyandry: an estimate of mating frequency in two African honeybee subspecies, A. mellifera monticola and A. mellifera scutellata. Insectes Soc 47:364–370Google Scholar
  14. Franck P, Solignac M, Vautrin D, Cornuet JM, Koeniger G, Koeniger N (2002) Sperm competition and last-male precedence in the honeybee. Anim Behav 64:503–509Google Scholar
  15. Frisch B, Koeniger N (1994) Social synchronisation of the activity rhythms of honeybees within the colony. Behav Ecol Sociobiol 35:91–98Google Scholar
  16. Fuchs S, Moritz RFA (1998) Evolution of extreme polyandry in the honeybee Apis mellifera L. Behav Ecol Sociobiol 9:269–275Google Scholar
  17. Fujiwara S, Miura H, Kumagai T, Sawaguchi T, Naya S, Goto KT, Suzuki K (1994) Drone congregation of Apis cerana japonica in an open area over larger trees (Zelkovia serrata). Apidologie 25:331–337Google Scholar
  18. Gary NE (1962) Chemical mating attractants in the queen honeybee. Science 136:773–774PubMedGoogle Scholar
  19. Gerstung F (1910) Der Bien und sein Zucht. Fritz Pfenningstorff, Berlin [in German]Google Scholar
  20. Gessner B, Ruttner F (1977) Transfer der Spermien in die Spermatheka der Bienenkönigin. Apidologie 8:1–18 [in German]Google Scholar
  21. Gries M (1997) Vergleichende Untersuchungen zum Flugverhalten von Drohnen der Gattung Apis bei der Königinnenverfolgung. Thesis, Universität Frankfurt am Main [in German]Google Scholar
  22. Gries M, Koeniger N (1996) Straight forward to the queen: pursuing honeybee drones (Apis mellifera L.) adjust their body axis to the direction of the queen. J Comp Physiol A 179:539–544Google Scholar
  23. Hadisoesilo S, Otis GW (1996) Drone flight times confirm the species status of Apis nigrocincta Smith, 1861 to be a species distinct from Apis cerana F. 1793, in Sulawesi, Indonesia. Apidologie 27:361–369Google Scholar
  24. Hölldobler B, Wilson EO (2009) The superorganism, the beauty, elegance and strangeness of insect societies. W.W. Norton, New YorkGoogle Scholar
  25. Klenk M, Koeniger G, Koeniger N, Fasold F (2004) Proteins in spermathecal gland secretion and spermathecal fluid and the properties of a 29 kDa protein in queens of A. mellifera. Apidologie 35:371–381Google Scholar
  26. Koeniger N (1970) Über die Fähigkeit der Bienenkönigin (A. mellifera L.) zwischen Arbeiterinnen- und Drohnenzellen zu unterscheiden. Apidologie 1:115–142 [in German]Google Scholar
  27. Koeniger G (1986) Mating sign and multiple mating in the honeybee. Bee World 67:141–150Google Scholar
  28. Koeniger G (1990) The role of mating sign in honey bees, Apis mellifera L.: does it hinder or promote multiple mating? Anim Behav 39:444–449Google Scholar
  29. Koeniger N, Koeniger G (1991) An evolutionary approach to mating behaviour and drone copulatory organs in Apis. Apidologie 22:581–590Google Scholar
  30. Koeniger N, Koeniger G (2000) Reproductive isolation among species of the genus Apis. Apidologie 31:313–339Google Scholar
  31. Koeniger N, Koeniger G (2007) Mating flight duration of Apis mellifera queens: As short as possible, as long as necessary. Apidologie 38:606–611Google Scholar
  32. Koeniger N, Wijayagunesekera HNP (1976) Time of drone flight in the three Asian honeybee species (Apis cerana, Apis florea, Apis dorsata). J Apic Res 15:67–71Google Scholar
  33. Koeniger N, Koeniger G, Wongsiri S (1989) Mating and sperm transfer in Apis florea. Apidologie 20:413–418Google Scholar
  34. Koeniger G, Koeniger N, Mardan M, Otis G, Wongsiri S (1991) Comparative anatomy of male genital organs in the genus Apis. Apidologie 22:539–552Google Scholar
  35. Koeniger G, Koeniger N, Mardan M, Wongsiri S (1993) Variance in weight of sexuals and workers within and between 4 Apis species (Apis florea, Apis dorsata, Apis cerana and Apis mellifera). In: Proceedings of 1st international conference on Asian honey bees bee mites, Bangkok, Wicwas Press, Cheshire, pp 104–109Google Scholar
  36. Koeniger G, Koeniger N, Tingek S (1994a) Mating flights, number of spermatozoa, sperm transfer and degree of polyandry in Apis koschevnikovi (Buttel-Reepen, 1906). Apidologie 25:224–238Google Scholar
  37. Koeniger G, Koeniger N, Tingek S (1994b) Crossfostered drones of Apis cerana Fabricius, 1793 and Apis koschevnikovi v. Buttel-Reepen, 1906 fly at their species specific mating times. Insectes Soc 41:73–78Google Scholar
  38. Koeniger N, Koeniger G, Tingek S, Kelitu A, Mardan M (1994c) Drones of Apis dorsata Fabricius, 1793 congregate under the canopy of tall emergent trees in Borneo. Apidologie 25:249–264Google Scholar
  39. Koeniger N, Koeniger G, Mardan M (1994d) Mimicking a honeybee queen? Vespa affinis indosinensis Pérez 1919 hunts drones of Apis cerana F. 1793. Ethology 98:149–153Google Scholar
  40. Koeniger G, Hänel H, Wissel M, Herth W (1996a) Cornual gland of the honey bee drone (Apis mellifera L.): structure and secretion. Apidologie 27:145–156Google Scholar
  41. Koeniger N, Koeniger G, Gries M, Tingek S, Kelitu A (1996b) Reproductive isolation of Apis nuluensis (Tingek, Koeniger and Koeniger 1996), by species specific mating time. Apidologie 27:353–360Google Scholar
  42. Koeniger N, Koeniger G, Tingek S, Kelitu A (1996c) Interspecific rearing and acceptance of queens between Apis cerana Fabr. 1793 and Apis koschevnikovi Buttel-Reepen 1906. Apidologie 27:371–380Google Scholar
  43. Koeniger N, Tingek S, Koeniger G, Gries M, Kelitu A (1998) Exploring the biodiversity of honeybees. Borneo 4:18–33Google Scholar
  44. Koeniger G, Koeniger N, Tingek S, Kelitu A (2000) Mating flights and sperm transfer in the dwarf honey bee Apis andreniformis (Smith, 1858). Apidologie 31:301–311Google Scholar
  45. Koeniger G, Koeniger N, Tingek S (2001) Diversity of the mating sign and its function in the genus Apis. In: Proceedings of the 7th international conference on tropical bees, Chiang Mai, pp 87–90Google Scholar
  46. Koeniger N, Koeniger G, Gries M, Tingek S (2005) Drone competition at drone congregation areas in four Apis species. Apidologie 36:211–221Google Scholar
  47. Koeniger N, Koeniger G, Tingek S (2010) Honey bee of Borneo, exploring the center of Apis diversity. Nat Hist Publ (Borneo), Kota Kinabalu, pp 53–60Google Scholar
  48. Kraus FB, Neumann P, van Praagh J, Moritz RFA (2004) Sperm limitation and the evolution of polyandry in the honeybee (Apis mellifera L.). Behav Ecol Sociobiol 55:494–501Google Scholar
  49. Kraus FB, Neumann P, Moritz RFA, Koeniger N, Tingek S (2005a) Using drones for estimating colony number by microsatellite DNA analyses of haploid males in Apis. Apidologie 36:223–229Google Scholar
  50. Kraus FB, Neumann P, Moritz RFA (2005b) Genetic variance of mating frequency in the honeybee (Apis mellifera L.). Insectes Soc 52:1–5Google Scholar
  51. Lap PV, Chinh PH, Chinh TX (1992) Some biological characteristics of A. cerana queen bees in Vietnam. In: Connor LJ, Rinderer TE, Sylvester HA, Wongsiri S (eds) Asian apiculture. Wicwac, Cheshire, pp 117-123Google Scholar
  52. Mayr E (1963) Animal species and evolution. Harvard University Press, CambridgeGoogle Scholar
  53. McEvoy M, Underwood BA (1988) The drone and species status of the Himalayan honey bee, Apis laboriosa (Hymenoptera: Apidae). J Kans Entomol Soc 61:246–249Google Scholar
  54. Moors DL (2010) Functional-morphological study of the male reproductive system of honeybees. Dissertation. Katholieke Universiteit Leuven, pp 138–146Google Scholar
  55. Moritz RFA (1993) Intracolonial relationship in the honey bee colony (Apis mellifera): molecular evidence and behavioural consequences. Verh Dtsch Zool Gesells 86:151–158Google Scholar
  56. Moritz RFA, Fuchs S (1998) Organisation of honeybee colonies: characteristics and consequences of a superorganism concept. Apidologie 29:7–22Google Scholar
  57. Moritz RFA, Southwick EE (1992) Bees as superorganisms – an evolutionary reality. Springer, HeidelbergGoogle Scholar
  58. Moritz RFA, Kryger P, Koeniger G, Koeniger N, Estoup A, Tingek S (1995) High degree of polyandry in Apis dorsata queens detected by DNA microsatellite variability. Behav Ecol Sociobiol 37:357–363Google Scholar
  59. Nagaraja N, Brockmann A (2009) Drone congregation areas of red dwarf honeybee, Apis florea. Nat Prec.: dl:10101/npre.2009.3955.1Google Scholar
  60. Nakamura J (1995) Brood cannibalism in colonies of Asian honeybee, A. cerana, as response to resource fluctuation. Tamagawa Univ Res Rev 1:33–48Google Scholar
  61. Neumann P, Moritz RFA, van Praagh J (1999) Queen mating frequency in different types of honeybee mating apiaries. J Apic Res 38:11–18Google Scholar
  62. Oldroyd BP, Wongsiri S (2006) Asian honey bees. Harvard University Press, CambridgeGoogle Scholar
  63. Oldroyd BP, Smolenski AJ, Cornuet JM, Wongsiri S, Estoup A, Rinderer TE, Crozier RH (1996) Levels of polyandry and intracolonial genetic relationships in Apis dorsata (Hymenoptera: Apidae). Ann Entomol Soc Am 89:276–283Google Scholar
  64. Oldroyd BP, Clifton MJ, Wongsiri S, Rinderer TE, Crozier RH (1997) Polyandry in the genus Apis, particularly Apis andreniformis. Behav Ecol Sociobiol 40:17–26Google Scholar
  65. Oldroyd BP, Clifton MJ, Parker K, Wongsiri S, Rinderer TE, Crozier RH (1998) Evolution of mating behaviour in the genus Apis and an estimate of mating frequency in A. cerana (Hymenoptera: Apidae). Ann Entomol Soc Am 91:700–709Google Scholar
  66. Otis GW, Hadisoesilo S (1996) Apis nigrocincta, a previously unrecognized honey bee species from Indonesia: Lessons in speciation. In: Proceedings of 3rd Asian apiculture association conference, Hanoi, pp 2–6Google Scholar
  67. Otis GW, Patton K, Tingek S (1995) Piping by queens of Apis cerana Fabricius 1793 and Apis koschevnikovi von Buttel-Reepen 1906. Apidologie 26:61–65Google Scholar
  68. Otis GW, Koeniger N, Rinderer TE, Hadisoesilo S, Yoshida T, Tingek S, Wongsiri S, Mardan MB (2001) Comparative mating flight times of Asian honey bees. In: Proceedings of 7th international conference on tropical bees, Chiang Mai, pp 137–141Google Scholar
  69. Paar J, Oldroyd BP, Huettinger E, Kastberger G (2004) Levels of polyandry in Apis laboriosa Smith from Nepal. Insectes Soc 51:212–214Google Scholar
  70. Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 33:553–561Google Scholar
  71. Patinawin S, Wongsiri S (1993) Male genitalia of honey bees. In: Connor LJ, Rinderer TE, Sylvester HA, Wongsiri S (eds) Asian apiculture. Wicwas, Cheshire, pp 110–116Google Scholar
  72. Pflugfelder J, Koeniger N, Svatos A, Crewe R (2004) Interspecific aggression among virgin queens (Apis mellifera, Apis cerana, Apis koschevnikovi and Apis florea) and evidence for a chemical releaser of queen fighting. In: Proceedings of 8th Asian apiculture association conference, Los Banos, p 362Google Scholar
  73. Phiancharoen M, Wongsiri S, Koeniger N, Koeniger G (2004) Instrumental insemination of Apis mellifera queens with hetero- and conspecific spermatozoa results in different sperm survival. Apidologie 35:503–511Google Scholar
  74. Plettner E, Otis GW, Wimalaratne PDC, Winston ML, Slessor KN, Pankiw T, Punchihewa RWK (1997) Species- and caste-determined mandibular gland signals in honeybees (Apis). J Chem Ecol 23:363–377Google Scholar
  75. Punchihewa RWK (1992) Beobachtungen und Experimente zur Paarungsbiologie von Apis cerana indica in Sri Lanka. Thesis, Universität Frankfurt am Main [in German]Google Scholar
  76. Punchihewa RWK (1994) Beekeeping for honey production in Sri Lanka. Sri Lanka Department of AgricultureGoogle Scholar
  77. Punchihewa RWK, Koeniger N, Koeniger G (1990) Congregation of Apis cerana indica drones in the canopy of trees in Sri Lanka. Apidologie 21:201–208Google Scholar
  78. Radloff SE, Hepburn HR, Koeniger G (2003) Comparison of flight design of Asian honeybee drones. Apidologie 34:1–6Google Scholar
  79. Rinderer TE, Oldroyd BP, Wongsiri S, Sylvester HA, De Guzman LI, Potichot S, Sheppard WS, Buchman SL (1993) Time of drone flight in four honeybee species in southeastern Thailand. J Apic Res 32:27–33Google Scholar
  80. Rinderer TE, Stelzer A, Oldroyd BP, Tingek S (1998) Levels of polyandry and intracolonial relationships in Apis koschevnikovi. J Apic Res 37:281–287Google Scholar
  81. Roberts WC (1944) Multiple mating of queen bees proved by progeny and flight tests. Glean Bee Cult 72:255–259, 303Google Scholar
  82. Rueppell O, Fondrk MK, Page RE (2005) Biodemographic analysis of male honey bee mortality. Aging Cell 4:13–19PubMedGoogle Scholar
  83. Ruttner F (1956a) Zur Frage der Spermaübetragung bei der Bienenkönigin. Insectes Soc 3:351–359 [in German]Google Scholar
  84. Ruttner F (1956b) The mating of the honeybee. Bee World 37:2–15Google Scholar
  85. Ruttner F (1973) Drohnen von Apis cerana Fabr auf einem Drohnensammelplatz. Apidologie 4:41–44 [in German]Google Scholar
  86. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, BerlinGoogle Scholar
  87. Ruttner F, Kaissling KE (1968) Über die interspezifische Wirkung des Sexuallockstoffes von Apis mellifica und Apis cerana. Zeit Vergl Physiol 59:362–370Google Scholar
  88. Ruttner F, Koeniger G (1971) Die Füllung der Spermatheka der Bienenkönigin – aktive Einwanderung oder passiver Transport der Spermatozoen. Zeit Vergl Physiol 72:411–422 [in German]Google Scholar
  89. Ruttner F, Maul V (1983) Experimental analysis of reproductive interspecies isolation of Apis mellifera L. and Apis cerana F. Apidologie 14:309–327Google Scholar
  90. Ruttner F, Ruttner H (1965) Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen. II. Beobachtungen an Drohnensammelplätzen. Z Bienenforsch 8:1–9 [in German]Google Scholar
  91. Ruttner F, Ruttner H (1966) Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen. IIl. Flugweite und Flugrichtung der Drohnen. Z Bienenforsch 8:332–254 [in German]Google Scholar
  92. Ruttner F, Woyke J, Koeniger N (1972) Reproduction in Apis cerana. 1. Mating behaviour. J Apic Res 11:141–146Google Scholar
  93. Ruttner F, Woyke J, Koeniger N (1973) Reproduction in Apis cerana. 2. Reproductive organs and natural insemination. J Apic Res 12:21–34Google Scholar
  94. Sandhu AS, Singh S (1960) The biology and brood rearing activities of the little honeybee – Apis florea Fabricius. Indian Bee J 22:27–35Google Scholar
  95. Schlüns H, Moritz RFA, Neumann P, Kryger P, Koeniger G (2005) Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Anim Behav 70:125–131Google Scholar
  96. Seidl R (1980) Die Sehfelder und Ommatidien-Divergenzwinkel der drei kasten der Honigbien (A. mellifera). Verh Dtsch Zool Ges 367 [in German]Google Scholar
  97. Sharma PJ (1960) Observations on the swarming and mating habits of the Indian honeybee. Bee World 41:121–125Google Scholar
  98. Shearer DA, Boch R, Morse RA, Laigo FM (1970) Occurrence of 9-oxodec-trans-2-enoic acid in queens of Apis dorsata, Apis cerana and Apis mellifera. J Insect Physiol 16:1437–1441Google Scholar
  99. Sherman PW, Seeley TD, Reeve HK (1988) Parasites, pathogens, and polyandry in social Hymenoptera. Am Nat 131:602–610Google Scholar
  100. Snodgrass RE (1956) The anatomy of the honey bee. Cornell University Press, LondonGoogle Scholar
  101. Taber S (1954) The frequency of multiple mating of queen honey bees. J Econ Entomol 47:995–998Google Scholar
  102. Takahashi J, Hashim SB, Tingek S, Shimizua I, YoshidaT (2008) A scientific note on the levels of polyandry in the black dwarf honeybee Apis andreniformis from Malaysia. Apidologie 39:233–234Google Scholar
  103. Tan NQ (2007) Biology of Apis dorsata in Vietnam. Apidologie 38:221–229Google Scholar
  104. Tan NQ, Mardan MB, Thai PH, Chinh PH (1996) Some reproductive biology of Apis dorsata. In: Proceedings of 3rd Asian apiculture association conference, Hanoi, pp 15–22Google Scholar
  105. Tan NQ, Mardan MB, Thai PH, Chinh PH (1999) Observations on multiple mating flights of Apis dorsata queens. Apidologie 30:339–346Google Scholar
  106. Tarpy DR, Page RE (2001) The curious promiscuity of queen honey bees (Apis mellifera): evolutionary and behavioural mechanisms. Ann Zool Fennici 38:255–265Google Scholar
  107. Tarpy DR, Nielsen R, Nielsen DI (2004) A scientific note on the revised estimates of effective paternity frequency in Apis. Insectes Soc 51:203–204Google Scholar
  108. Triasko VV (1956a) Multiple matings of queen bees. Pchelovodstvo 34:29–31Google Scholar
  109. Triasko VV (1956b) Polyandry in honey bees. XVI International beekeepers congress, Preliminary Science Meeting 233/56Google Scholar
  110. Trivers RL, Hare H (1976) Haplodiploidy and the evolution of the social insects. Science 191:249–263PubMedGoogle Scholar
  111. Underwood BA (1990) Time of drone flight of Apis laboriosa Smith, 1871 in Nepal. Apidologie 21:501–504Google Scholar
  112. Vallet AM, Cole JA (1993) The perception of small objects by the drone honeybee. J Comp Physiol A 172:183–188Google Scholar
  113. van Praagh JP, Ribi W, Wehrhan C, Wittmann D (1980) Drone bees fixate the queen with the dorso-frontal part of their compound eyes. J Comp Physiol 136:263–266Google Scholar
  114. Verma LR (1973) An ionic basis for a possible mechanism of sperm survival in the spermatheca of the queen honey bee Apis mellifera. Comp Biochem Physiol 44:1325–1331Google Scholar
  115. Verma LR (1991) Beekeeping in integrated mountain development. Oxford and IBH, New DelhiGoogle Scholar
  116. von Berlepsch A (1873) Die Biene und ihre Zucht auf beweglichen Waben in Gegenden ohne Spätsommertracht, 3rd edn. J. Schneider, Mannheim [in German]Google Scholar
  117. Wattanachaiyingcharoen W, Oldroyd BP, Wongsiri S, Palmer K, Paar S (2003) A scientific note on the mating frequency of Apis dorsata Fabricius. Apidologie 34:85–86Google Scholar
  118. Weiss K (1962) Untersuchungen über die Drohnenbruterzeugung im bienenvolk. Arch Bienenkunde 39:1–7 [in German]Google Scholar
  119. Winston ML (1987) The biology of the honey bee. Harvard University Press, CambridgeGoogle Scholar
  120. Woyke J (1960) Natural and artificial insemination of queen honeybees. Pszcz Zesz Nauk 4:183–275Google Scholar
  121. Woyke J (1975) Natural and artificial insemination of Apis cerana in India. J Apic Res 14:153–159Google Scholar
  122. Woyke J (1988) A mathematical model for the dynamics of spermatozoa entry into the spermathecae of instrumentally inseminated queen honeybees. J Apic Res 27:122–125Google Scholar
  123. Woyke J (2001) Eversion of drone endophallus and the probable mating process in Apis dorsata. In: Proceedings of the 7th Asian apiculture association conference on tropical bees, Chiang Mai, pp 188–194Google Scholar
  124. Woyke J (2008) Why the eversion of the endophallus of honey bee drone stops at the partly everted stage and significance of this. Apidologie 39:627–636Google Scholar
  125. Woyke J, Ruttner F (1958) An anatomical study of the mating process in the honeybee. Bee World 39:3–18Google Scholar
  126. Woyke J, Wilde J, Wilde M (2001) Apis dorsata drone flights, collection of semen from everted endophalli and instrumental insemination of queens. Apidologie 32:407–416Google Scholar
  127. Wu Y, Kuang B (1986) A study of genus Micrapis (Apidae). Zool Res 7:99–102Google Scholar
  128. Yoshida T (1995) Differences in mating flight times and drone congregation areas of native Apis cerana japonica and introduced Apis mellifera. Honeybee Sci 16:57–66Google Scholar
  129. Yoshida T, Yamazaki M (1993) Difference in drone congregation areas of Apis mellifera and Apis cerana japonica as a reproductive isolation mechanism. In: Connor LK, Rinderer T, Sylvester A, Wongsiri S (eds) Asian apiculture. Wicwas, Cheshire, pp 99–103Google Scholar
  130. Yoshida T, Saito J, Kajigaya N (1994) The mating flight times of native Apis cerana japonica Radoszkowski and introduced Apis mellifera L. in sympatric conditions. Apidologie 25:353–360Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gudrun Koeniger
    • 1
    Email author
  • Nikolaus Koeniger
    • 1
  • Mananya Phiancharoen
    • 2
  1. 1.Institut für Bienenkunde (Polytechnische Gesellschaft), Fachbereich BiowissenschaftenGoethe UniversitätOberurselGermany
  2. 2.King Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations