Occurrence and Identity of “White Spots” in Phylactolaemata

White Spots in Phylactolaemata
Chapter
Part of the Lecture Notes in Earth System Sciences book series (LNESS, volume 143)

Abstract

Localised epidermal gland complexes of unknown function have previously been recognised as “white spots” in Pectinatella magnifica and Lophopodella carteri, but not in other phylactolaemate species. In this study a similar glandular organ is described for Lophopus crystallinus. It is a complex epidermal gland that consists of two types of gland cells, one of which contains light-refracting, possibly lipidic, vesicles. This gland is situated at the anal side of the duplicature, distal to a pore, which most likely resembles the vestibular or statoblast pore. Such a pore had always been postulated, but histological evidence was lacking so far. The most likely functions of the glandular organs could either be connected to statoblast expulsion or to chemical defence.

Keywords

Bryozoa Ultrastructure Confocal microscopy Epidermal glands Statoblast pore Toxicity 

References

  1. Allman GJ (1856) A monograph of the fresh-water Polyzoa. Ray Soc Lond 18:1–119Google Scholar
  2. Bushnell JH (1966) Environmental relations of Michigan Ectoprocta, and dynamics of natural populations of Plumatella repens. Ecol Monogr 36:95–123CrossRefGoogle Scholar
  3. Calvet L (1900) Contribution à l’histoire naturelle des bryozoaires ectoproctes marins. Trav Inst Zool Univ Montpellier 8:1–488Google Scholar
  4. Carter MC, Gordon DP, Gardner JPA (2010) Polymorphism and vestigiality: comparative anatomy and morphology of bryozoan avicularia. Zoomorphology 129:195–211CrossRefGoogle Scholar
  5. Collins EJ, Tenney WR, Woolcott WS (1966) Histological effects of the poison of Lophopodella carteri (Hyatt) on the gills of Carassius auratus (Linnaeus) and larval Ambystoma opacum (Gravenhorst). Va J Sci 17:155–163Google Scholar
  6. Dumortier BC, van Beneden PJ (1850) Histoire naturelle des polypiers composés d’eau douce des bryozoaires fluviatiles. Hayez, BruxellesGoogle Scholar
  7. Gasser F (1962) L’épiderme du cystide de Plumatella repens (Linné) (bryozaire ectoprocte phylactolème) precisions histologiques, cytologiques et histochimiques. Arch Zool Exp Gén 101:1–13Google Scholar
  8. Gruhl A, Wegener I, Bartolomaeus T (2009) Ultrastructure of the body cavities in Phylactolaemata (Bryozoa). J Morphol 270:306–318CrossRefGoogle Scholar
  9. Hirose M, Dick MH, Mawatari SF (2008) Molecular phylogenetic analysis of phylactolaemate bryozoans based on mitochondrial gene sequences. In: Hageman GS, Key MM Jr, Winston JE (eds) Bryozoan studies 2007. Virginia Museum of Natural History, Martinsville, pp 65–74Google Scholar
  10. Hyatt A (1866) Observations on polyzoan order Phylactolaemata. Communications of the Essex Institute 4:197–228Google Scholar
  11. James MA (1997) Brachiopoda: internal anatomy, embryology, and development. In: Harrison FW, Woollacott RM (eds) Microscopic anatomy of invertebrates, vol 13, Lophophorates, entoprocta and cycliophora. Wiley-Liss, New York, pp 298–407Google Scholar
  12. Lauer TE, Barnes DK, Ricciardi A, Spacie A (1999) Evidence of recruitment inhibition of zebra mussels (Dreissena polymorpha) by a freshwater bryozoan (Lophopodella carteri). J N Am Benthol Soc 18:406–413CrossRefGoogle Scholar
  13. Leidy J (1851) On Cristatella magnifica. Proceed. Acad. Nat. sc. Philadelphia 5:265–266Google Scholar
  14. Lutaud G (1964) Sur la structure et le rôle des glandes vestibulaires et sur la nature de certains organes de la cavité cystidienne chez les bryozoaires chilostomes. Cah Biol Mar 5:201–231Google Scholar
  15. Lutaud G (1965) Sur la présence de microorganismes spécifiques dans les glandes vestibulaires et dans l’aviculaire de Palmicellaria skenei (Ellis et Solander), bryozoaire chilostome. Cah Biol Mar 6:181–190Google Scholar
  16. Mano R (1964) The coelomic corpuscles and their origin in the freshwater bryozoan, Lophopodella carteri. Sci Rep Tokyo Kyoiku Dai (sec B) 11:211–235Google Scholar
  17. Marcus E (1934) Über Lophopus crystallinus (Pall.). Zool Jb Anat Ontog Tiere 58:501–606Google Scholar
  18. Marcus E (1939) Briozoários marinhos brasileiros III. Bol Fac Fil, Cienc Letr Univ Sao Paulo, Zool 3:111–353Google Scholar
  19. Marcus E (1941) Sôbre Bryozoa do Brasil. Bol Fac Fil, Cienc Letr Univ Sao Paulo, Zool 5:3–208Google Scholar
  20. Marcus E (1942) Sôbre Bryozoa do Brasil II. Bol Fac Fil, Cienc Letr Univ Sao Paulo, Zool 6:57–105Google Scholar
  21. Meacham RH, Woolacott WS (1968) Studies of the coelomic fluid and isotonic homogenates of the freshwater bryozoan Lophopodella carteri (Hyatt) on fish tissues. Va J Sci N S 19:143–146Google Scholar
  22. Mukai H, Oda S (1980) Histological and histochemical studies on the epidermal system of higher phylactolaemate bryozoans. Annot Zool Japan 53:1–17Google Scholar
  23. Mukai H, Terakado K, Reed CG (1997) Bryozoa. In: Harrison FW, Woollacott RM (eds) Microscopic anatomy of invertebrates, vol 13, Lophophorates, Entoprocta and Cycliophora. Wiley-Liss, New York, pp 45–206Google Scholar
  24. Nitsche H (1868) Beiträge zur Anatomie und Entwickelungsgeschichte der phylactolaemen Süsswasserbryozoen insbesondere von Alcyonella fungosa. Dissertation, Friedrich-Wilhelms-Universität zu BerlinGoogle Scholar
  25. Oda S (1958) On the outflow of the blood in colonies of freshwater Bryozoa. Kagaku (Tokyo) 28:37Google Scholar
  26. Okuyama M, Wada H, Ishii T (2006) Phylogenetic relationships of freshwater bryozoans (Ectoprocta, Phylactolaemata) inferred from mitochondrial ribosomal DNA sequences. Zool Scr 35:243–249CrossRefGoogle Scholar
  27. Pallas PS (1768) Descripto Tubulariae fugosa propae Volodemirum mense Julio 1768 observatae. Novi Commentarii academiae scientiarum imperialis Petropolitanae 12:565–572Google Scholar
  28. Peterson NL (2002) Neurotoxin found in the freshwater bryozoan Lophopodella carteri. In: Wyse Jackson PN, Spencer Jones ME (eds) Bryozoan Studies 2001. Sets and Zeilinger, Lisse, pp 257–260Google Scholar
  29. Rogick MD (1957) Studies on freshwater Bryozoa, XVIII Lophopodella carteri in Kentucky. Trans Ky Acad Sci 18:85–87Google Scholar
  30. Schwaha T, Handschuh S, Redl E, Walzl M (2011) Organogenesis in the budding process of the freshwater bryozoan Cristatella mucedo Cuvier, 1798 (Bryozoa, Phylactolaemata). J Morphol 272:320–341CrossRefGoogle Scholar
  31. Sharp JH, Winson MK, Porter JS (2007) Bryozoan metabolites: an ecological perspective. Nat Prod Rep 24:659–673CrossRefGoogle Scholar
  32. Tenney WR, Woolacott WS (1964) A comparison of the responses of some species of fishes to the toxic effect of the bryozoan, Lophopodella carteri (Hyatt). Va J Sci 15:16–20Google Scholar
  33. Waters AW (1892) Observations on the gland-like bodies in the Bryozoa. Zool J Linn Soc 24:272–278CrossRefGoogle Scholar
  34. Wiebach F (1952) Über den Ausstoss von Flottoblasten bei Plumatella fruticosa (Allman). Zool Anz 149:181–185Google Scholar
  35. Wiebach F (1953) Über den Ausstoss von Flottoblasten bei Plumatellen. Zool Anz 151:266–272Google Scholar
  36. Winston JE, Bernheimer AW (1986) Haemolytic activity in an Antarctic bryozoan. J Nat Hist 20:369–374CrossRefGoogle Scholar
  37. Wood TS, Lore M (2005) The higher phylogeny of phylactolaemate bryozoans inferred from 18S ribosomal DNA sequences. In: Moyano HI, Cancino JM, Wyse Jackson PN (eds) Bryozoan studies 2004. Balkema, London, pp 361–367CrossRefGoogle Scholar
  38. Wood TS, Okamura B (2005) A new key to the freshwater bryozoans of Britain, Ireland and Continental Europe. Freshwater Biological Association, Cumbria, UKGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ZoologyNatural History MuseumLondonUK

Personalised recommendations