Contextual Factors in Database Integration — A Delphi Study

  • Joerg Evermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6412)


Database integration is an important process in information systems development, maintenance, and evolution. Schema matching, the identification of data elements that have the same meaning, is a critical step to ensure the success of database integration. Much research has been devoted to developing matching heuristics. If these heuristics are to be useful and acceptable, they must meet the expectations of their users. This paper presents an exploratory Delphi study that investigates what information is used by professionals for schema matching.


Contextual Factor Average Rank Information Item Schema Match Delphi Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10, 334–350 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Evermann, J.: Theories of meaning in schema matching: A review. J. Database Manage. 19, 55–83 (2008)CrossRefGoogle Scholar
  3. 3.
    Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS, vol. 2593, pp. 221–237. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Evermann, J.: Theories of meaning in schema matching: An exploratory study. Inform Syst. 34, 28–44 (2009)CrossRefGoogle Scholar
  5. 5.
    Evermann, J.: An exploratory study of database integration processes. IEEE T. Knowl. Data En. 20, 99–115 (2008)CrossRefGoogle Scholar
  6. 6.
    Bohannon, P., Elnahrawy, E., Fan, W., Flaster, M.: Putting context into schema matching. In: Proc. Int. Conf. VLDB, pp. 307–318 (2006)Google Scholar
  7. 7.
    Palopoli, L., Sacca, D., Terracina, G., Ursino, D.: Uniform techniques for deriving similaritites of objects and subschemas in heterogeneous databases. IEEE T. Knowl. Data En. 15, 271–294 (2003)CrossRefGoogle Scholar
  8. 8.
    Batini, C., Lenzerini, M., Navathe, S.: A comparative analysis of methodologies for database schema integration. ACM Comput. Surv. 18, 323–364 (1986)CrossRefGoogle Scholar
  9. 9.
    Kang, J., Naughton, J.F.: Schema matching using interattribute dependencies. IEEE T. Knowl. Data En. 20, 1393–1407 (2008)CrossRefGoogle Scholar
  10. 10.
    Lerner, B.S.: A model for compound type changes encountered in schema evolution. ACM T. Database Syst. 25, 83–127 (2000)CrossRefGoogle Scholar
  11. 11.
    Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of ontology interdependencies. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 86–100. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Bertino, E., Guerrini, G., Mesiti, M.: A matching algorithm for measuring the structural similarity between an XML document and a DTD and its applications. Inform Syst. 29, 23–46 (2004)CrossRefGoogle Scholar
  13. 13.
    Castano, S., De Antonellis, V., De Capitani di Vimercati, S.: Global viewing of heterogeneous data sources. IEEE T. Knowl. Data En. 13, 277–297 (2001)CrossRefGoogle Scholar
  14. 14.
    Larson, J., Navathe, S., Elmasri, R.: A theory of attribute equivalence in databases with application to schema integration. IEEE T. Software Eng. 15, 449–463 (1989)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gotthard, W., Lockemann, P.C., Neufeld, A.: System-guided view integration for object-oriented databases. IEEE T. Knowl. Data En. 4, 1–22 (1992)CrossRefGoogle Scholar
  16. 16.
    Hayne, S., Ram, S.: Multi-user view integration system (MUVIS): an expert system for view integration. In: Proc ICDE, pp. 402–409 (1990)Google Scholar
  17. 17.
    Spaccapietra, S., Parent, C.: View integration: A step forward in solving structural conflicts. IEEE T. Knowl. Data En. 6, 258–274 (1992)CrossRefGoogle Scholar
  18. 18.
    Yeh, P.Z., Porter, B., Barker, K.: Using transformations to improve semantic matching. In: Proc K-CAP 2003, pp. 180–189 (2003)Google Scholar
  19. 19.
    Noy, N., Musen, M.: Anchor-PROMPT: Using non-local context for smeantic matching. In: Workshop on Ontologies and Information Sharing at IJCAI (2001)Google Scholar
  20. 20.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In: Proc ICDE, pp. 117–126 (2002)Google Scholar
  21. 21.
    Wang, T.L.J., Zhang, K., Jeong, K., Shasha, D.: A system for approximate tree matching. IEEE T. Knowl Data En. 6, 559–571 (1994)CrossRefGoogle Scholar
  22. 22.
    Berlin, J., Motro, A.: Database schema matching using machine learning with feature selection. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 452–466. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Kang, J., Naughton, J.F.: On schema matching with opaque column names and data values. In: Proc ACM SIGMOD, pp. 205–216 (2003)Google Scholar
  24. 24.
    Miller, R.J., Hernandez, M.A., Haas, L.M., Yan, L., Ho, C.H., Fagin, R., Popa, L.: The Clio project: Managing heterogeneity. SIGMOD Rec. 30, 78–83 (2001)CrossRefGoogle Scholar
  25. 25.
    Chua, C.E.H., Chiang, R.H., Lim, E.P.: Instance-based attribute identification in database integration. VLDB J. 12, 228–243 (2003)CrossRefGoogle Scholar
  26. 26.
    Li, W.S., Clifton, C., Liu, S.Y.: Database integration using neural networks: Implementation and experiences. Knowl. Inf. Syst. 2, 73–96 (2000)CrossRefzbMATHGoogle Scholar
  27. 27.
    Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to match ontologies on the semantic web. VLDB J. 12, 303–319 (2003)CrossRefGoogle Scholar
  28. 28.
    Su, X., Hakkarainen, S., Brasethvik, T.: Semantic enrichment for improving system interoperability. In: Proc. ACM SAC, pp. 1634–1641 (2004)Google Scholar
  29. 29.
    Okoli, C., Pawlowski, S.D.: The delphi method as a research tool: an examples, design considerations and applications. Inform. & Manage. 42, 15–29 (2004)CrossRefGoogle Scholar
  30. 30.
    Schmidt, R.C.: Managing delphi surveys using nonparametric statistical techniques. Decision Sci. 28, 763–774 (1997)CrossRefGoogle Scholar
  31. 31.
    Kendall, M., Babington Smith, B.: The problem of m rankings. Ann. Math. Stat. 10, 275–287 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hufnagel, E.M., Conca, C.: User response data: The potential for errors and biases. Inform. Syst. Res. 5, 48–73 (1994)CrossRefGoogle Scholar
  33. 33.
    Berlin, J., Motro, A.: Autoplex: Automated discovery of content for virtual databases. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 108–122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  34. 34.
    Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain structure to compute similarity. ACM T. Inform. Syst. 21, 64–93 (2003)CrossRefGoogle Scholar
  35. 35.
    Quix, C., Geisler, S., Kensche, D., Li, X.: Results of GeRoMeSuite for OAEI 2008. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 160–166. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joerg Evermann
    • 1
  1. 1.Faculty of Business AdministrationMemorial University of Newfoundland, St. John’sCanada

Personalised recommendations