Robot Localisation in Known Environment Using Monte Carlo Localisation

  • David Obdržálek
  • Stanislav Basovník
  • Pavol Jusko
  • Tomáš Petrůšek
  • Michal Tuláček
Part of the Communications in Computer and Information Science book series (CCIS, volume 82)


In this paper we present our approach to localisation of a robot in a known environment. The decision making and the driving is much harder to be done without the knowledge of the exact position. Therefore we discuss the importance of the localisation and describe several known localising algorithms. Then we concentrate on the one we have chosen for our application and outline the implementation supporting various inputs. Combining of the measurements is also discussed. In addition to well known inputs like odometry and other simple inputs we describe deeper our beaconing system which proved to be very useful.


Autonomous robot Localisation Monte Carlo Localisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eurobot: Eurobot autonomous robot contest (2009),
  2. 2.
    Thrun, S.: Robotic mapping: a survey. In: Exploring Artificial Intelligence in the New Millennium, pp. 1–35. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  3. 3.
    Negenborn, R.: Robot localisation and kalman filters: On finding your position in a noisy world. Master’s thesis, Utrecht University (2003)Google Scholar
  4. 4.
    Welch, G., Bishop, G.: An introduction to the kalman filter. Technical Report TR 95-041, University of North Carolina at Chapel Hill (2004)Google Scholar
  5. 5.
    Burgard, W., Derr, A., Fox, D., Cremers, A.B.: Integrating global position estimation and position tracking for mobile robots: The dynamic markov localization approach. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (1998)Google Scholar
  6. 6.
    Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: Proc. of the IEEE International Conference on Robotics & Automation, ICRA’99 (1998)Google Scholar
  7. 7.
    Yi, S.y.: Global ultrasonic system with selective activation for autonomous navigation of an indoor mobile robot. Robotica 26(3), 277–283 (2008)CrossRefGoogle Scholar
  8. 8.
    Dazhai, L., Fu, F.H., Wei, W.: Ultrasonic based autonomous docking on plane for mobile robot. In: IEEE International Conference on Automation and Logistics (ICAL 2008), pp. 1396–1401 (2008)Google Scholar
  9. 9.
    Menegatti, E., Zoccarato, M., Pagello, E., Ishiguro, H.: Image-based monte-carlo localisation with omnidirectional images. Robotics and Autonomous Systems 48, 17–30 (2004)CrossRefGoogle Scholar
  10. 10.
    Hähnel, D., Burgard, W.: Mapping and localization with rfid technology. In: Proc. of the IEEE International Conference on Robotics & Automation (ICRA’05), pp. 1015–1020 (2004)Google Scholar
  11. 11.
    Wulf, O., Khalaf-Allah, M., Wagner, B.: Using 3d data for monte carlo localization in complex indoor environments. In: 2nd Bi-Annual European Conference on Mobile Robots (ECMR’05), pp. 170–175 (2005)Google Scholar
  12. 12.
    Lenser, S., Veloso, M.: Sensor resetting localization for poorly modelled mobile robots. In: Proc. of the IEEE International Conference on Robotics & Automation, ICRA’00 (2000)Google Scholar
  13. 13.
    Mikulik, A., Obdrzalek, D., Petrusek, T., Basovnik, S., Dekar, M., Jusko, P., Pechal, R., Pitak, R.: Logion - a robot which collects rocks. In: Proceedings of the EUROBOT Conference 2008, pp. 276–287 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Obdržálek
    • 1
  • Stanislav Basovník
    • 1
  • Pavol Jusko
    • 1
  • Tomáš Petrůšek
    • 1
  • Michal Tuláček
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePraha 1Czech Republic

Personalised recommendations