Testing Juntas: A Brief Survey

  • Eric Blais
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6390)


A function on n variables is called a k-junta if it depends on at most k of its variables. In this survey, we review three recent algorithms for testing k-juntas with few queries.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atıcı, A., Servedio, R.A.: Quantum algorithms for learning and testing juntas. Quantum Information Processing 6(5), 323–348 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. of the ACM 48(4), 778–797 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M., Sudan, M.: Linearity testing in characteristic two. IEEE Transactions on Information Theory 42(6), 1781–1795 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability – towards tight results. SIAM J. Comput. 27(3), 804–915 (1998)CrossRefMATHGoogle Scholar
  5. 5.
    Blais, E.: Improved bounds for testing juntas. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 317–330. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Blais, E.: Testing juntas nearly optimally. In: Proc. 41st Symposium on Theory of Computing, pp. 151–158 (2009)Google Scholar
  7. 7.
    Blum, A.: Relevant examples and relevant features: thoughts from computational learning theory. In: AAAI Fall Symposium on ‘Relevance’ (1994)Google Scholar
  8. 8.
    Blum, A.: Learning a function of r relevant variables. In: Proc. 16th Conference on Computational Learning Theory, pp. 731–733 (2003)Google Scholar
  9. 9.
    Blum, A., Hellerstein, L., Littlestone, N.: Learning in the presence of finitely or infinitely many irrelevant attributes. J. Comp. Syst. Sci. 50(1), 32–40 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97(2), 245–271 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Buhrman, H., Fortnow, L., Newman, I., Röhrig, H.: Quantum property testing. In: Proc. 14th Symp. on Discrete Algorithms, pp. 480–488 (2003)Google Scholar
  13. 13.
    Chen, V.: Query-Efficient dictatorship testing with perfect completeness. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 276–279. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Chockler, H., Gutfreund, D.: A lower bound for testing juntas. Information Processing Letters 90(6), 301–305 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A., Wan, A.: Testing for concise representations. In: Proc. 48th Symposium on Foundations of Computer Science, pp. 549–558 (2007)Google Scholar
  16. 16.
    Efron, B., Stein, C.: The jackknife estimate of variance. Ann. of Stat. 9(3), 586–596 (1981)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. J. Comput. Syst. Sci. 68(4), 753–787 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. of the ACM 45(4), 653–750 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Goldreich, O., Ron, D.: Algorithmic aspects of property testing in the dense graphs model. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX–RANDOM 2009. LNCS, vol. 5687, pp. 520–533. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Goldreich, O., Ron, D.: Algorithmic aspects of property testing in the dense graphs model. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 295–305. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Gonen, M., Ron, D.: On the benefits of adaptivity in property testing of dense graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 525–539. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Guijarro, D., Tarui, J., Tsukiji, T.: Finding relevant variables in PAC model with membership queries. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS (LNAI), vol. 1720, pp. 313–322. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Lipton, R.J., Markakis, E., Mehta, A., Vishnoi, N.K.: On the Fourier spectrum of symmetric boolean functions with applications to learning symmetric juntas. In: Proc. 20th Conference on Computational Complexity, pp. 112–119 (2005)Google Scholar
  24. 24.
    Matulef, K., O’Donnell, R., Rubinfeld, R., Servedio, R.A.: Testing halfspaces. In: Proc. 19th Symp. on Discrete Algorithms, pp. 256–264 (2009)Google Scholar
  25. 25.
    Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of k relevant variables. J. Comput. Syst. Sci. 69(3), 421–434 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J. Discret. Math. 16(1), 20–46 (2003)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rubinfeld, R., Sudan, M.: Self-testing polynomial functions efficiently and over rational domains. In: Proc. 3rd Symp. on Discrete Algorithms, pp. 23–32 (1992)Google Scholar
  28. 28.
    Servedio, R.: Testing by implicit learning: a brief survey. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 197–210. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eric Blais
    • 1
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations