Testing by Implicit Learning: A Brief Survey

  • Rocco A. Servedio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6390)


We give a high-level survey of the “testing by implicit learning” paradigm, and explain some of the property testing results for various Boolean function classes that have been obtained using this approach.


Boolean functions computational learning theory Occam’s Razor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Occam’s razor. Information Processing Letters 24, 377–380 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Blais, E.: Testing juntas nearly optimally. In: Proc. 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 151–158 (2009)Google Scholar
  3. 3.
    Chockler, H., Gutfreund, D.: A lower bound for testing juntas. Information Processing Letters 90(6), 301–305 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Diakonikolas, I., Lee, H., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R., Wan, A.: Testing for concise representations. In: Proc. 48th Ann. Symposium on Computer Science (FOCS), pp. 549–558 (2007)Google Scholar
  5. 5.
    Diakonikolas, I., Lee, H., Matulef, K., Servedio, R., Wan, A.: Efficiently testing sparse GF(2) polynomials. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 502–514. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.: New results for learning noisy parities and halfspaces. In: Proc. 47th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 563–576 (2006)Google Scholar
  7. 7.
    Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. Journal of Computer & System Sciences 68, 753–787 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM 45, 653–750 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gopalan, P., O’Donnell, R., Servedio, R., Shpilka, A., Wimmer, K.: Testing Fourier dimensionality and sparsity. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 500–512. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J. Disc. Math. 16, 20–46 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Schapire, R., Sellie, L.: Learning sparse multivariate polynomials over a field with queries and counterexamples. J. Comput. & Syst. Sci. 52(2), 201–213 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rocco A. Servedio
    • 1
  1. 1.Department of Computer ScienceColumbia UniversityNew YorkUSA

Personalised recommendations