Ontology-Enabled Activity Learning and Model Evolution in Smart Homes

  • George Okeyo
  • Liming Chen
  • Hui Wang
  • Roy Sterritt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6406)


Activity modelling plays a critical role in activity recognition and assistance in smart home based assisted living. Ontology-based activity modelling is able to leverage domain knowledge and heuristics to create Activities of Daily Living (ADL) models with rich semantics. However, they suffer from incompleteness, inflexibility, and lack of adaptation. In this paper, we propose a novel approach for learning and evolving activity models. The approach uses predefined ”seed” ADL ontologies to identify activities from sensor activation streams. We develop algorithms that analyze logs of activity data to discover new activities as well as the conditions for evolving the seed ADL ontologies. We illustrate our approach through a scenario that shows how ADL models can be evolved to accommodate new ADL activities and preferences of individual smart home’s inhabitants.


Activity modelling activity learning ontology evolution smart homes ambient assisted living 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nehmer, J., Becker, M., Karshmer, A., Lamm, R.: Living assistance systems - an ambient intelligence approach. In: 28th International Conference on Software Engineering, pp. 43–50. ACM, New York (2006)Google Scholar
  2. 2.
    Chen, L., Nugent, C.D.: Ontology-based activity recognition in intelligent pervasive environments. Inter. J. of Web Info. Sys. 5, 410–430 (2009)CrossRefGoogle Scholar
  3. 3.
    Haase, P., Sure, Y.: State-of-the-Art on Ontology Evolution. Technical report, Semantically Enabled Knowledge Technologies (2004)Google Scholar
  4. 4.
    Patterson, D.J., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: 9th IEEE Int. Symp. on Wearable Computers, pp. 44–51. IEEE Computer Society, Washington (2005)CrossRefGoogle Scholar
  5. 5.
    Tapia, E.M., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: 11th IEEE Int. Symp. on Wearable Computers, pp. 37–40. IEEE Computer Society, Washington (2007)Google Scholar
  6. 6.
    Huynh, T., Blanke, U., Schiele, B.: Scalable recognition of daily activities with wearable sensors. In: 3rd Int. Conf. on Location-and Context-Awareness, pp. 50–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Liao, L., Fox, D., Kautz, H.: Extracting places and activities from GPS traces using hierarchical conditional random fields. Int. J. Robotics Res. 26, 119–134 (2007)CrossRefGoogle Scholar
  8. 8.
    Huynh, T., Schiele, B.: Unsupervised discovery of structure in activity data using multiple eigenspaces. In: Hazas, M., Krumm, J., Strang, T. (eds.) LoCA 2006. LNCS, vol. 3987, pp. 151–167. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Chua, S., Marsland, S., Guesgen, H.W.: Spatio-temporal and context reasoning in smart homes. In: Int. Conf. on Spatial Information Theory, pp. 9–20. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Lafti, F., Lefebvre, B., Descheneaux, C.: Ontology-Based Management of the Telehealth Smart Home, Dedicated to Elders in Loss of Cognitive Autonomy. In: 3rd Int. Workshop (2007)Google Scholar
  11. 11.
    Akdemir, U., Turaga, P., Chellappa, R.: An ontology based approach for activity recognition from video. In: 16th ACM Int. Conf. on Multimedia, pp. 709–712. ACM, New York (2008)Google Scholar
  12. 12.
    Yamada, N., Sakamoto, K., Kunito, G., Isoda, Y., Yamazaki, K., Tanaka, S.: Applying ontology and probabilistic model to human activity recognition from surrounding things. Trans. of the Info. Processing Soc. of Japan 48, 2823–2834 (2007)Google Scholar
  13. 13.
    Stojanovic, L.: Methods and Tools for Ontology Evolution, PhD Thesis, Research Center for Info. Technologies at the Uni. of Karslruhe (2004)Google Scholar
  14. 14.
    Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology change: classification and survey. Knowl. Eng. Rev. 23, 117–152 (2008)CrossRefGoogle Scholar
  15. 15.
    Horrocks, I.: OWL: A description logic based ontology language. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 5–8. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Castano, S., Ferrara, A., Hess, G.: Discovery-Driven Ontology Evolution. In: 3rd Italian Semantic Web Workshop (2006)Google Scholar
  17. 17.
    Zablith, F., Sabou, M., d’Aquin, M., Motta, E.: Using Background Knowledge for Ontology Evolution. In: Int. Workshop on Ontology Dynamics (2008)Google Scholar
  18. 18.
    Zablith, F.: Ontology Evolution: A Practical Approach. In: Workshop on Matching and Meaning at Artificial Intelligence and Simulation of Behaviour (2009)Google Scholar
  19. 19.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: 6th European Conf. on Principles and Practice of Knowledge Discovery in Databases, pp. 348–360. Springer, London (2002)Google Scholar
  21. 21.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
  23. 23.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • George Okeyo
    • 1
  • Liming Chen
    • 1
  • Hui Wang
    • 1
  • Roy Sterritt
    • 1
  1. 1.Computer Science Research Institute, School of Computing and MathematicsUniversity of UlsterNewtownabbeyUnited Kingdom

Personalised recommendations