Extending 3D Shape Measurement with Reflectance Estimation

  • Robert Sitnik
  • Jakub Krzesłowski
  • Grzegorz Mączkowski
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 84)

Summary

The increasing need of providing information about the surface of complex 3D objects accounts for new approaches in shape, color and reflectivity measurements. A method integrating 3D shape and reflectance measurement has been developed, based on multispectral imaging and directional illumination. The unified data representation of objects under investigation can aid machine vision, digital documentation and expand means of realistic imaging of unique items in virtual reality. While there already exist methods of merging image based reflectance measurements with 3D data collected independently, this is a step toward integration and increase of data correspondence. Also, the proposed data processing method allows further extension, and fulfills needs of both an accurate and mobile solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bieri, L.S., Jacot, J.: Three-dimensional vision using structured light applied to quality control in production line. In: Proc. SPIE, vol. 5457, p. 463 (2004)Google Scholar
  2. 2.
    Kubik, D.L., Greenwood, J.A.: Development of photogrammetric methods of stress analysis and quality control. Technical Sciences University of Warmia and Mazury in Olsztyn 6, 73–100 (2003)Google Scholar
  3. 3.
    Francken, Y., Cuypers, T., Mertens, T., Gielis, J., Bekaert, P.: High quality mesostructure acquisition using specularities. Computer Vision and Pattern Recognition, 1–7 (2008)Google Scholar
  4. 4.
    Sitnik, R., Witkowski, M.: Locating and tracing of anatomical landmarks based on full-field 4d measurement of human body surface. Journal of Biomedical Optics 13 (2008)Google Scholar
  5. 5.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proc. SIGGRAPH 2001, pp. 511–518 (2001)Google Scholar
  6. 6.
    Sitnik, R., Kujawinska, M., Woznicki, J.: Digital fringe projection system for large-volume 360-deg shape measurement. Opt. Eng. 41, 443–449 (2002)CrossRefGoogle Scholar
  7. 7.
    Tonsho, K., Akao, Y., Tsumura, N., Miyake, Y.: Development of Goniophotometric Imaging System for Recording Reflectance Spectra of 3D Objects. In: Proc. SPIE Color Imaging: Device-Independent Color, Color Hardcopy, and Applications VII, vol. 4663, pp. 370–378 (2002)Google Scholar
  8. 8.
    Sitnik, R.: New method of structure light measurement system calibration based on adaptive and effective evaluation of 3D-phase distribution. In: Proc. SPIE, vol. 5856, pp. 109–117 (2005)Google Scholar
  9. 9.
    Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae. John Wiley & Sons, Chichester (2000)Google Scholar
  10. 10.
    Lafortune, E., Foo, S., Torrance, K., Greenberg, D.: Non-linear approximation of reflectance functions. In: SIGGRAPH 1997 Conference Proceedings, Annual Conference Series, pp. 117–126 (1997)Google Scholar
  11. 11.
    Phong, B.T.: Illumination for computer generated pictures. Communications of the ACM 18, 311–317 (1975)CrossRefGoogle Scholar
  12. 12.
    Malacara, D.: Color Vision and Colorimetry: Theory and Applications. SPIE Press, San Jose (2002)Google Scholar
  13. 13.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)CrossRefGoogle Scholar
  14. 14.
    Lee, L.C.: Color Imaging Science. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Robert Sitnik
    • 1
  • Jakub Krzesłowski
    • 1
  • Grzegorz Mączkowski
    • 1
  1. 1.Institute of Micromechanics and PhotonicsWarsaw University of TechnologyWarsaw

Personalised recommendations